Abstract

Sensible thermal energy storage (TES) systems can reduce energy environmental fluctuation dependency with the nocturnal energy needs usage in maintaining the building's comfort levels. In the present paper, phase change material (PCM) is introduced to improve the thermal energy storage capacity of a solar collector integrating a novel composite PCM/concrete wall. A mathematical model based upon the conservation and heat transfer equations has been developed using the enthalpy method. The equations that govern the problem were discretized with the control volume scheme and solved iteratively using the tridiagonal matrix algorithm (TDMA). The numerical investigation has been implemented into a personal fortran code. Many series of simulation runs were executed. The position of the PCM layer within the wall and the PCM melting temperature are varied in the range 0 cm ≤ xm ≤ 7.5 cm and 15 °C ≤ Tm ≤ 35 °C, respectively. The objective is to let inner temperature Tin swing close to a comfort threshold. The position of PCM close to the absorber improves the efficiency of the room heating with good nocturnal use of latent heat stored during the day. PCM melting temperature affects deeply the composite PCM/concrete wall/solar collector behavior. Lastly, PCM gained the system an important benefit which is the solar collector high-temperature isolation as to not reach the room and disturb the inside comfort zone by melting and solidifying. Those parameters can be considered as the primary pointers for PCM/wall integrated solar collector design. Also, a daily heating potential, Qh, and thermal load leveling, TLL, are introduced to evaluate the system performance.

References

1.
Levermore
,
G.
,
2008
, “
A Review of the IPCC Assessment Report Four, Part 1: The IPCC Process and Greenhouse as Emission Trends From Buildings Worldwide
,”
Build. Serv. Eng. Res. Technol.
,
29
(
4
), pp.
349
361
.
2.
Belén
,
Z.
,
José
,
M. M.
,
Luisa
,
F. C.
, and
Harald
,
M.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
3.
Meng
,
Z.
,
Mario
,
A. M.
, and
Jennifer
,
B. K.
,
2005
, “
Development of a Thermally Enhanced Frame Wall With Phase-Change Materials for On-Peak Air Conditioning Demand Reduction and Energy Savings in Residential Buildings
,”
Int. J. Energy Res.
,
29
(
9
), pp.
795
809
.
4.
Nghana
,
B.
, and
Tariku
,
F.
,
2016
, “
Phase Change Material’s (PCM) Impacts on the Energy Performance and Thermal Comfort of Buildings in a Mild Climate
,”
Build. Environ.
,
99
, pp.
221
238
.
5.
Maria
,
T. P.
,
Evangelos
,
B.
,
Christos
,
T.
, and
Antonopoulos
,
K. A.
,
2019
, “
Numerical Simulation of a Solar Cooling System With and Without Phase Change Materials in Radiant Walls of a Building
,”
Energy Convers. Manage.
,
188
(
16
), pp.
40
53
.
6.
Nelson
,
S.
,
Reinhart
,
C. F.
, and
Ali
,
E. H.
,
2017
, “
Simulation-Based Analysis of the Use of PCM-Wallboards to Reduce Cooling Energy Demand and Peak-Loads in Low-Rise Residential Heavyweight Buildings in Kuwait
,”
Build. Simul.
,
10
(
4
), pp.
481
495
.
7.
Saffari
,
M.
,
Alvaro
,
D. G.
,
Fernàndez
,
C.
, and
Luisa
,
F. C.
,
2017
, “
Simulation-Based Optimization of PCM Melting Temperature to Improve the Energy Performance in Buildings
,”
Appl. Energy
,
202
, pp.
420
434
.
8.
Faraji
,
H.
,
Benkaddour
,
A.
,
Oudaoui
,
K.
,
Alami
,
M.
, and
Faraji
,
M.
,
2020
, “
Emerging Applications of Phase Change Materials: A Concise Review of Recent Advances
,”
Heat Transfer-Asian Res.
,
50
(
2
), pp.
1
51
.
9.
Kharbouch
,
Y.
,
Mimet
,
A.
, and
El Ganaoui
,
M.
,
2016
, “
A Simulation-Based Optimization Method for Energy Efficiency of a Multi-zone House Integrated PCM
,”
Energy Procedia
,
139
, pp.
450
455
.
10.
Evola
,
G.
,
Marletta
,
L.
, and
Sicurella
,
F.
,
2013
, “
A Methodology for Investigating the Effectiveness of PCM Wallboards for Summer Thermal Comfort in Buildings
,”
Build. Environ.
,
59
, pp.
517
527
.
11.
Zingre
,
K. T.
,
Wan
,
M. P.
, and
Yang
,
X.
,
2015
, “
A New RTTV (Roof Thermal Transfer Value) Calculation Method for Cool Roofs
,”
Energy
,
81
, pp.
222
232
.
12.
Zingre
,
K. T.
,
Wan
,
M. P.
,
Tong
,
S.
,
Li
,
H.
,
Chang
,
V. W.-C.
,
Wong
,
S. K.
,
Thian
,
W. B. T.
, and
Leng
,
I. Y. L.
,
2015
, “
Modeling of Cool Roof Heat Transfer in a Tropical Climate
,”
Renewable Energy
,
75
, pp.
210
223
.
13.
Lei
,
J.
,
Kumarasamy
,
K.
,
Zingre
,
K. T.
,
Yang
,
J.
,
Wan
,
M. P.
, and
Yang
,
E.-H.
,
2017
, “
Cool Colored Coating, and Phase Change Materials as Complementary Cooling Strategies for Building Cooling Load Reduction in Tropics
,”
Appl. Energy
,
190
, pp.
57
63
.
14.
Esbati
,
S.
,
Amooi
,
M. A.
,
Sadeghzadeh
,
M.
,
Ahmadi
,
M. H.
,
Pourfayaz
,
F.
, and
Ming
,
T.
,
2019
, “
Investigating the Effect of Using PCM in Building Materials for Energy Saving: A Case Study of Sharif Energy Research Institute
,”
Energy Sci. Eng.
,
8
(
14
), pp.
959
972
.
15.
Carmona
,
M.
, and
Palacio
,
M.
,
2019
, “
Thermal Modeling of a Flat Plate Solar Collector With Latent Heat Storage Validated With Experimental Data in Outdoor Conditions
,”
Sol. Energy
,
177
, pp.
620
633
.
16.
Hamed
,
M.
,
Fallah
,
A.
, and
Brahim
,
A. B.
,
2017
, “
Numerical Analysis of an Integrated Storage Solar Heater
,”
Int. J. Hydrogen Energy
,
42
(
13
), pp.
8721
8732
.
17.
Zhou
,
F.
,
Ji
,
J.
,
Yuan
,
W.
,
Modjinou
,
M.
,
Zhao
,
X.
, and
Huang
,
S.
,
2019
, “
Experimental Study and Performance Prediction of the PCM-Antifreeze Solar Thermal System Under Cold Weather Conditions
,”
Appl. Therm. Eng.
,
146
, pp.
526
539
.
18.
Yang
,
X.
,
Sun
,
L.
,
Yuan
,
Y.
,
Zhao
,
X.
, and
Cao
,
X.
,
2018
, “
Experimental Investigation on Performance Comparison of PV/T-PCM System and PV/T System
,”
Renewable Energy
,
119
, pp.
152
159
.
19.
Hossain
,
M. S.
,
Pandey
,
A. K.
,
Selvaraj
,
J.
,
Rahim
,
N. A.
,
Islam
,
M. M.
, and
Tyagi
,
V. V.
,
2019
, “
Two Side Serpentine Flow-Based Photovoltaic-Thermal-Phase Change Materials (PVT-PCM) System: Energy, Exergy, and Economic Analysis
,”
Renewable Energy
,
136
, pp.
1320
1336
.
20.
Kazemian
,
A.
,
Salari
,
A.
,
Hakkaki-Fard
,
A.
, and
Ma
,
T.
,
2019
, “
Numerical Investigation and Parametric Analysis of a Photovoltaic Thermal System Integrated With Phase Change Material
,”
Appl. Energy
,
238
, pp.
734
746
.
21.
Palacio
,
V. M.
,
Rincón
,
A.
, and
Carmona
,
M.
,
2020
, “
Experimental Comparative Analysis of a Flat Plate Solar Collector With and Without PCM
,”
Sol. Energy
,
206
, pp.
708
721
.
22.
Chaichan
,
M. T.
, and
Abaas
,
K. I.
,
2015
, “
Performance Amelioration of a Trombe Wall by Using Phase Change Material (PCM)
,”
Int. Adv. Res. J. Sci. Eng. Technol.
,
2
(
4
), pp.
1
6
.
23.
Badiei
,
Z.
,
Eslami
,
M.
, and
Jafarpur
,
K.
,
2020
, “
Performance Improvements in Solar Flat Plate Collectors by Integrating With Phase Change Materials and Fins: a CFD Modeling
,”
Energy
,
192
.
24.
Recknagel
,
S.
, and
Honmann
,
S.
,
1995
,
Manuel Pratique du Génie Climatique, Données Fondamentales, PYC Edition Livres
, ISBN 3-486-26212-2.
25.
Swinbank
,
W. C.
,
1963
, “
Long-Wave Radiation From Clear skies
,”
Q. J. R. Meteorol. Soc.
,
381
(
89
), pp.
339
348
.
26.
Hollands
,
K. G. T.
,
Unny
,
T. E.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1976
, “
Free Convective Heat Transfer Across Inclined Air Layers
,”
ASME J. Heat Transfer-Trans. ASME
,
98
(
2
), pp.
189
193
.
27.
Wei
,
L.
,
Yuan
,
D.
,
Tang
,
D.
, and
Wu
,
B.
,
2013
, “
A Study on a Flat-Plate Type of Solar Heat Collector With an Integrated Heat Pipe
,”
Sol. Energy
,
97
, pp.
19
25
.
28.
Yang
,
Y.
,
Wang
,
Q.
,
Xiu
,
D.
,
Zhao
,
Z.
, and
Sun
,
Q.
,
2013
, “
A Building-Integrated Solar Collector: All-Ceramic Solar Collector
,”
Energy Build.
,
62
, pp.
15
17
.
29.
Voller
,
V. R.
,
Cross
,
M.
, and
Markatos
,
N. C.
,
1987
, “
An Enthalpy Method for Convection/ Diffusion Phase Change
,”
Int. J. Numer. Methods Eng.
,
24
(
1
), pp.
271
284
.
30.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, 1st ed,
Hemisphere
,
Washington, DC
.
31.
Cabeza
,
L. F.
,
Castell
,
A.
,
Barrenche
,
C.
,
Gracia
,
A.
, and
Fernández
,
A. I.
,
2010
, “
Materials Used as PCM in Thermal Energy Storage in Buildings: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1675
1695
.
32.
Tagliafico
,
L. A.
,
Scarpa
,
F.
, and
De Rosa
,
M.
,
2014
, “
Dynamic Thermal Models and CFD Analysis for Flat-Plate Thermal Solar Collectors—A Review
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
526
537
.
33.
Li
,
B. Z.
,
Zhang
,
C. L.
, and
Deng
,
A.
,
2009
, “
Study on Improving the Indoor Thermal Environment in a Lightweight Building Combining PCM Wall and Nighttime Ventilation
,”
J. Civ. Archit. Environ. Eng.
,
31
(
3
), pp.
109
113
.
34.
François
,
M. P.
, and
Louis
,
G.
,
2009
, “
Thermal Shielding of Multilayer Walls With Phase Change Materials Under Different Transient Boundary Conditions
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1707
1717
.
35.
Abdul
,
J. N. K.
, and
Ehsan
,
F. A.
,
2009
, “
A Comparative Performance Study of Some Thermal Storage Materials Used for Solar Space Heating
,”
Energy Build.
,
41
(
4
), pp.
407
415
.
37.
Liu
,
J.
,
Heidarinejad
,
M.
,
Gracik
,
S.
, and
Srebric
,
J.
,
2015
, “
The Impact of Exterior Surface Convective Heat Transfer Coefficients on the Building Energy Consumption in Urban Neighborhoods With Different Plan Area Densities
,”
Energy Build.
,
86
, pp.
449
463
.
38.
Yinping
,
Z.
,
Kunping
,
L.
,
Qunli
,
Z.
, and
Hongfa
,
D.
,
2006
, “
Ideal Thermophysical Properties for Free-Cooling (or Heating) Buildings With Constant Thermal Physical Property Material
,”
Energy Build.
,
38
(
10
), pp.
1164
1170
.
39.
Adam
,
E. A.
, and
Jones
,
P. J.
,
1995
, “
Thermophysical Properties of Stabilized Soil Building Blocks
,”
Build. Environ.
,
30
(
2
), pp.
245
253
.
40.
Rathore
,
P. K. S.
,
Shukla
,
S. K.
, and
Gupta
,
N. K.
,
2020
, “
Synthesis and Characterization of the Paraffin/Expanded Perlite Loaded With Graphene Nanoparticles as a Thermal Energy Storage Material in Buildings
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
041006
.
41.
Li
,
Z. X.
,
Abdullah
,
A. R.
,
Mahfouz
,
R.
,
Rasool
,
K.
,
Shahsavar
,
A.
, and
Masoud
,
A.
,
2019
, “
Heat Transfer Reduction in Buildings by Embedding Phase Change Material in Multi-layer Walls: Effects of Repositioning, Thermophysical Properties, and Thickness of PCM
,”
Energy Convers. Manage.
,
195
, pp.
43
56
.
42.
Zhuang
,
C.-L.
,
Deng
,
A.-Z.
,
Chen
,
Y.
,
Li
,
S.-B.
,
Zhang
,
H.-Y.
, and
Fan
,
G.-Z.
,
2010
, “
Validation of Veracity on Simulating the Indoor Temperature in PCM Light Weight Building EnergyPlus
,”
Life Syst. Model. Intell. Comput.
,
38,
, pp.
486
496
.
43.
44.
Singh
,
R. D.
, and
Tiwari
,
G. N.
,
2000
, “
Thermal Heating of Controlled Environment Greenhouse: A Transient Analysis
,”
Energy Convers. Manage.
,
41
(
5
), pp.
505
522
.
You do not currently have access to this content.