Abstract

This study analyzed the heat transfer potential of nanofluids (suspension of Al2O3 nanoparticles in 60:40 mixtures of ethylene glycol and water by volume) compared to the base fluid by modeling the flow in both laminar and turbulent flow regimes in a flat tube of a radiator using both single-phase and Eulerian–Eulerian multiphase approaches of computational fluid dynamics (CFD) simulation. Nusselt number is calculated by varying the Reynolds number for both the models and compared with the theoretical correlations and the experimental data available in the literature. The effect of change in volumetric concentrations, inlet velocities, inlet temperatures, and particle sizes on the heat transfer performance parameters of nanofluids was evaluated. The multiphase approach showed a 5–45% greater increase in Nusselt number than the single-phase approach for the same volume fraction up to 1% and thereafter multiphase approach showed an even higher Nusselt number. The multiphase model revealed that raising the volume fraction up to 2% increases the Nusselt number of nanofluid by approximately thrice that of the base fluid but after that further increase in volume fraction does not show any significant increment. With the increase in Reynolds number, the Nusselt number, as well as surface heat transfer coefficient, increased for both laminar and turbulent flow regimes. Skin friction coefficient, pressure drop across inlet and outlet, and pumping power required increased slightly with the increase in volume fractions. Also, on varying the nanoparticle size, superior performance was observed at the particle size of 25 nm.

References

1.
Bahiraei
,
M.
,
Rahmani
,
R.
,
Yaghoobi
,
A.
,
Khodabandeh
,
E.
,
Mashayekhi
,
R.
, and
Amani
,
M.
,
2014
, “
Recent Research Contributions Concerning Use of Nanofluids in Heat Exchangers: A Critical Review
,”
Appl. Therm. Eng.
,
133
, pp.
137
159
.
2.
Bergles
,
A. E.
,
1979
, “
Energy Conservation Via Heat Transfer Enhancement
,”
Energy
,
4
(
2
), pp.
193
200
.
3.
Ali
,
M.
,
El-Leathy
,
A. M.
, and
Al-Sofyany
,
Z.
,
2014
, “
The Effect of Nanofluid Concentration on the Cooling System of Vehicles Radiator,”
,”
Adv. Mech. Eng.
,
6
, p.
962510
.
4.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
,
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,
Argonne National Lab. (ANL)
,
Argonne, IL (United States)
.
5.
Delavari
,
V.
, and
Hashemabadi
,
S. H.
,
2014
, “
CFD Simulation of Heat Transfer Enhancement of Al2O3/Water and Al2O3/Ethylene Glycol Nanofluids in a Car Radiator
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
380
390
.
6.
Said
,
Z.
,
Assad
,
M. E. H.
,
Hachicha
,
A. A.
,
Bellos
,
E.
,
Abdelkareem
,
M. A.
,
Alazaizeh
,
D. Z.
, and
Yousef
,
B. A.
,
2019
, “
Enhancing the Performance of Automotive Radiators Using Nanofluids
,”
Renewable Sustainable Energy Rev.
,
112
, pp.
183
194
.
7.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Chandra Bose
,
A.
,
2010
, “
Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluids,”
,”
Exp. Therm. Fluid. Sci.
,
34
(
2
), pp.
210
216
.
8.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Hoseini
,
S. M.
, and
Seifi Jamnani
,
M.
,
2011
, “
Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluids as a New Coolant for Car Radiators,”
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1283
1290
.
9.
Shafahi
,
M.
,
Bianco
,
V.
,
Vafai
,
K.
, and
Manca
,
O.
,
2010
, “
An Investigation of the Thermal Performance of Cylindrical Heat Pipes Using Nanofluids,”
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
376
383
.
10.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime For Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4607
46018
.
11.
Keshavarz Moraveji
,
M.
, and
Razvarz
,
S.
,
2012
, “
Experimental Investigation of Aluminum Oxide Nanofluids on Heat Pipe Thermal Performance
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1444
1448
.
12.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Ray
,
D. R.
,
2015
, “
Development of new Correlations for the Nusselt Number and the Friction Factor Under Turbulent Flow of Nanofluids in Flat Tubes
,”
Int. J. Heat Mass Transfer
,
80
, pp.
353
367
.
13.
Zhao
,
N.
,
Yang
,
J.
,
Li
,
H.
,
Zhang
,
Z.
, and
Li
,
S.
,
2016
, “
Numerical Investigations of Laminar Heat Transfer and Flow Performance of Al2O3-Water Nanofluids in a Flat Tube
,”
Int. J. Heat Mass Transfer
,
92
, pp.
268
282
.
14.
Kalteh
,
M.
,
Abbassi
,
A.
,
Saffar-Avval
,
M.
, and
Harting
,
J.
,
2011
, “
Eulerian-Eulerian Two-Phase Numerical Simulation of Nanofluid Laminar Forced Convection in a Micro-Channel
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
107
116
.
15.
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
2017
,
ASHRAE Handbook Fundamentals 2017
,
ASHRAE
.
16.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.
17.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer Int. J.
,
11
(
2
), pp.
151
170
.
18.
Çengel
,
Y. A.
,
2007
,
Heat and Mass Transfer: A Practical Approach
,
McGraw-Hill
,
New York
.
19.
Ray
,
D. R.
, and
Das
,
D. K.
,
2014
, “
Superior Performance of Nanofluids in an Automotive Radiator
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041002
.
20.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
21.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
1
), pp.
151
155
.
22.
ANSYS fluent Theory Guide
,
2013
,
Release 15.0
,
ANSYS, Inc.
,
Canonsburg, PA
.
You do not currently have access to this content.