Abstract

Flat heat pipes (FHPs) are commonly used as a passive cooling system in portable electronic gadgets due to their compact profile. The present study investigates the effect of different working fluids on the thermal performance of a miniature FHP under different orientations and condenser cooling mechanisms and the start-up performance of FHP. Deionized water, acetone, ethanol, and methanol are chosen as working fluids in the FHP. Five different inclinations (0 deg (horizontal), 30 deg, 45 deg, 60 deg, and 90 deg (vertical)) and two different condenser cooling methods (natural convection and forced convection with fan cooling) are considered in this experimental study. The FHP thermal performance is quantified in terms of overall temperature difference, thermal resistance, and effective thermal conductivity. The results indicate that comparatively higher effective thermal conductivity values are obtained for methanol and acetone heat pipes at low heat loads and under natural convection. At higher heat loads, the ethanol heat pipe had higher effective thermal conductivity values for the same condenser cooling method. For the case of the forced convection cooling mode, the methanol heat pipe had enhanced thermal performance as compared to the other three fluids for all heat load ranges and different inclinations. Due to the higher boiling point of water, as a working fluid water is not suitable in most of the experimental trials except at high heat load under forced convection cooling and in a horizontal orientation. The maximum effective thermal conductivity of 7846 W/mK is obtained for FHP filled with methanol at 24 W heat load and 90 deg orientation under forced convection condenser cooling.

References

1.
Ahamed
,
M. S.
,
Saito
,
Y.
,
Mashiko
,
K.
, and
Mochizuki
,
M.
,
2017
, “
Characterization of a High Performance Ultra-Thin Heat Pipe Cooling Module for Mobile Hand Held Electronic Devices
,”
Heat Mass Transfer
,
53
(
11
), pp.
3241
3247
.
2.
Li
,
J.
,
Lv
,
L.
,
Zhou
,
G.
, and
Li
,
X.
,
2019
, “
Mechanism of a Microscale Flat Plate Heat Pipe With Extremely High Nominal Thermal Conductivity for Cooling High-End Smartphone Chips
,”
Energy Convers. Manage.
,
201
, p.
112202
.
3.
Aoki
,
H.
,
Shioya
,
N.
,
Ikeda
,
M.
, and
Kimura
,
Y.
,
2010
, “
Development of Ultra Thin Plate-Type Heat Pipe With Less Than 1 mm Thickness
,”
2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
,
Santa Clara, CA
,
Feb. 21–25
, pp.
217
223
.
4.
Mozumder
,
A. K.
,
Akon
,
A. F.
,
Chowdhury
,
M. S. H.
, and
Banik
,
S. C.
,
2011
, “
Performance of Heat Pipe for Different Working Fluids and Fill Ratios
,”
J. Mech. Eng.
,
41
(
2
), pp.
96
102
.
5.
Peyghambarzadeh
,
S. M.
,
Shahpouri
,
S.
,
Aslanzadeh
,
N.
, and
Rahimnejad
,
M.
,
2013
, “
Thermal Performance of Different Working Fluids in a Dual Diameter Circular Heat Pipe
,”
Ain Shams Eng. J.
,
4
(
4
), pp.
855
861
.
6.
Naphon
,
P.
,
Assadamongkol
,
P.
, and
Borirak
,
T.
,
2008
, “
Experimental Investigation of Titanium Nano Fluids on the Heat Pipe Thermal Efficiency
,”
Int. Commun. Heat Mass Transfer
,
35
(
10
), pp.
1316
1319
.
7.
Attia
,
A. A. A.
, and
El-Assal
,
B. T. A.
,
2012
, “
Experimental Investigation of Vapor Chamber With Different Working Fluids at Different Charge Ratios
,”
Ain Shams Eng. J.
,
3
(
3
), pp.
289
297
.
8.
Wang
,
H.
,
Bai
,
P.
,
Zhou
,
H.
,
Coehoorn
,
R.
,
Li
,
N.
,
Liao
,
H.
, and
Zhou
,
G.
,
2019
, “
An Integrated Heat Pipe Coupling the Vapor Chamber and Two Cylindrical Heat Pipes With High Anti-Gravity Thermal Performance
,”
Appl. Therm. Eng.
,
159
, p.
113816
.
9.
Bogarrasa
,
K.
, and
Khlifa
,
M.
,
2020
, “
Effect of Pure and Binary Azeotropic Fluids on Heat Pipes Performance
,”
Adv. J. Chem. A
,
3
(
4
), pp.
442
453
.
10.
Fumoto
,
K.
,
Kawaji
,
M.
, and
Kawanami
,
T.
,
2010
, “
Effect of Working Fluid on Pulsating Heat Pipe Thermal Performance
,”
2010 14th International Heat Transfer Conference
,
Washington, DC
,
Aug. 8–13
, pp.
393
399
.
11.
Pachghare
,
P. R.
, and
Mahalle
,
A. M.
,
2013
, “
Effect of Pure and Binary Fluids on Closed Loop Pulsating Heat Pipe Thermal Performance
,”
Procedia Eng.
,
51
, pp.
624
629
.
12.
Wilson
,
C.
,
Borgmeyer
,
B.
,
Winholtz
,
R. A.
,
Ma
,
H. B.
,
Jacobson
,
D.
, and
Hussey
,
D.
,
2011
, “
Thermal and Visual Observation of Water and Acetone Oscillating Heat Pipes
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
6
), p.
061502
.
13.
Zhang
,
X. M.
,
Xu
,
J. L.
, and
Zhou
,
Z. Q.
,
2004
, “
Experimental Study of a Pulsating Heat Pipe Using FC-72, Ethanol, and Water as Working Fluids
,”
Exp. Heat Transfer
,
17
(
1
), pp.
47
67
.
14.
Karthikeyan
,
V. K.
,
Ramachandran
,
K.
,
Pillai
,
B. C.
, and
Brusly Solomon
,
A.
,
2014
, “
Effect of Nanofluids on Thermal Performance of Closed Loop Pulsating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
171
178
.
15.
Qu
,
J.
,
Li
,
X.
,
Cui
,
Y.
, and
Wang
,
Q.
,
2017
, “
Design and Experimental Study on a Hybrid Flexible Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
107
, pp.
640
645
.
16.
Guichet
,
V.
,
Delpech
,
B.
,
Khordehgah
,
N.
, and
Jouhara
,
H.
,
2022
, “
Experimental and Theoretical Investigation of the Influence of Heat Transfer Rate on the Thermal Performance of a Multi-channel Flat Heat Pipe
,”
Energy
,
250
, p.
123804
.
17.
Li
,
D.
,
Huang
,
Z.
,
Liao
,
X.
,
Zu
,
S.
, and
Jian
,
Q.
,
2021
, “
Heat and Mass Transfer Characteristics of Ultra-Thin Flat Heat Pipe With Different Liquid Filling Rates
,”
Appl. Therm. Eng.
,
199
, p.
117588
.
18.
Xin
,
F.
,
Lyu
,
Q.
, and
Tian
,
W.
,
2022
, “
Visualization and Heat Transfer Performance of Mini-Grooved Flat Heat Pipe Filled With Different Working Fluids
,”
Micromachines
,
13
(
8
), p.
1341
.
19.
Wong
,
S. C.
, and
Liao
,
W. S.
,
2018
, “
Visualization Experiments on Flat-Plate Heat Pipes With Composite Mesh-Groove Wick at Different Tilt Angles
,”
Int. J. Heat Mass Transfer
,
123
, pp.
839
847
.
20.
Liu
,
C.
,
Li
,
Q.
, and
Fan
,
D.
,
2019
, “
Fabrication and Performance Evaluation of Flexible Flat Heat Pipes for the Thermal Control of Deployable Structure
,”
Int. J. Heat Mass Transfer
,
144
, p.
118661
.
21.
Rathod
,
J.
,
Lakhera
,
V. J.
, and
Shukla
,
A.
,
2023
, “
Experimental Study on the Effect of Graphene and Al2O3 Nanofluids in a Miniature Flat Heat Pipe
,”
Therm. Sci. Eng. Prog.
,
42
, p.
101905
.
22.
Washburn
,
E. W.
,
1926
,
International Critical Tables of Numerical Data, Physics, Chemistry and Technology
,
National Academies
,
New York
.
23.
Zohuri
,
B.
,
2011
,
Heat Pipe Design and Technology
,
CRC Press
,
Boca Raton, FL
.
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
25.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
11
), pp.
1213
1216
.
26.
Hopkins
,
R. C.
,
Faghri
,
A.
, and
Khrustalev
,
D.
,
1999
, “
Flat Miniature Heat Pipes With Micro Capillary Grooves
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
1
), pp.
102
109
.
27.
Li
,
H.
,
Zhou
,
B.
,
Tang
,
Y.
,
Zhou
,
R.
,
Liu
,
Z.
, and
Xie
,
Y.
,
2015
, “
Effect of Working Fluid on Heat Transfer Performance of the Anti-Gravity Loop-Shaped Heat Pipe
,”
Appl. Therm. Eng.
,
88
, pp.
391
397
.
28.
Kole
,
M.
, and
Dey
,
T. K.
,
2013
, “
Thermal Performance of Screen Mesh Wick Heat Pipes Using Water-Based Copper Nanofluids
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
763
770
.
29.
Do
,
K. H.
, and
Jang
,
S. P.
,
2010
, “
Effect of Nanofluids on the Thermal Performance of a Flat Micro Heat Pipe With a Rectangular Grooved Wick
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2183
2192
.
30.
Mousa
,
M. G.
,
2011
, “
Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe
,”
Ain Shams Eng. J.
,
2
(
1
), pp.
63
69
.
31.
Jouhara
,
H.
,
Chauhan
,
A.
,
Nannou
,
T.
,
Almahmoud
,
S.
,
Delpech
,
B.
, and
Wrobel
,
L. C.
,
2017
, “
Heat Pipe Based Systems—Advances and Applications
,”
Energy
,
128
, pp.
729
754
.
32.
Do
,
K. H.
,
Ha
,
H. J.
, and
Jang
,
S. P.
,
2010
, “
Thermal Resistance of Screen Mesh Wick Heat Pipes Using the Water-Based Al2O3 Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5888
5894
.
33.
Wu
,
G. W.
,
Chen
,
S. L.
, and
Shih
,
W. P.
,
2012
, “
Lamination and Characterization of a Polyethylene-Terephthalate Flexible Micro Heat Pipe
,”
Front. Heat Pipes
,
3
(
2
), pp.
80
85
.
You do not currently have access to this content.