Graphical Abstract Figure

Schematic of double-pipe heat exchanger: (a) regular and (b) enhanced

Graphical Abstract Figure

Schematic of double-pipe heat exchanger: (a) regular and (b) enhanced

Close modal

Abstract

Downsizing double-pipe heat exchangers is possible by deploying ribs on the two sides of the heat exchangers. The shape of these ribs, along with two key geometric variables—pitch and height, are crucial in the selection of energy-efficient rib configurations. This is because the enhancement in heat transfer performance comes at the cost of increased pressure drop. Thus, the goal of this numerical investigation is to identify favorable rib shapes and explore the effect of truncation on triangular ribs, which was found to be absent in existing literature. Truncation can address challenges with existing triangular ribs and is expected to greatly affect the performance of conventional triangular ribs. To explore this conclusively, an unbiased and exhaustive analysis is carried out by comparing the performance of confinements with modified and regular triangular ribs, keeping plain confinements as the baseline. Furthermore, the effects of two principal design variables—rib height and rib pitch—are explored for each shape, over a wide range considering essentially all possible combinations. Separate results are presented for the inner and outer confinements of the double-pipe heat exchangers (pipes and annuli) to allow for the extrapolation of results for a wide range of applications employing internal flows in pipes and annuli. A phenomenological model is developed to classify the thermal and hydraulic performance of each confinement and identify optimal geometrical configuration and identify best-performing design(s). Once optimal rib pitch-–height combinations are identified, performance at this optimal combination is evaluated at different Reynolds numbers, spanning from 10,000 to 30,000.

References

1.
Mohammed
,
H. A.
,
Hasan
,
H. A.
, and
Wahid
,
M. A.
,
2013
, “
Heat Transfer Enhancement of Nanofluids in a Double Pipe Heat Exchanger With Louvered Strip Inserts
,”
Int. Commun. Heat Mass Transfer
,
40
, pp.
36
46
.
2.
Andrzejczyk
,
R.
,
Muszynski
,
T.
, and
Kozak
,
P.
,
2021
, “
Experimental and Computational Fluid Dynamics Studies on Straight and U-Bend Double Tube Heat Exchangers With Active and Passive Enhancement Methods
,”
Heat Transfer Eng.
,
42
(
3–4
), pp.
167
180
.
3.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D. D.
,
2015
, “
Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
444
469
.
4.
Arora
,
A.
, and
Subbarao
,
P. M. V.
,
2023
, “
Investigation of Performance Augmentation Due to Geometric Modification of Vortex Generators Placed in Fin-and-Tube Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
5
), p.
050906
.
5.
Arora
,
A.
, and
Subbarao
,
P. M. V.
,
2023
, “
Attack Angle Parametrization for Capacity Augmentation and Wake Management by Vortex Generators in Finned Compact Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
11
), p.
111009
.
6.
Zhu
,
R.
,
Li
,
S.
, and
Xie
,
G.
,
2022
, “
Conjugate Heat Transfer and Flow Features of Single-Hole and Combined-Hole Film Cooling With Rib-Roughened Internal Passages
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091006
.
7.
Mousa
,
M. H.
,
Miljkovic
,
N.
, and
Nawaz
,
K.
,
2021
, “
Review of Heat Transfer Enhancement Techniques for Single Phase Flows
,”
Renewable Sustainable Energy Rev.
,
137
, p.
110566
.
8.
Tavousi
,
E.
,
Perera
,
N.
,
Flynn
,
D.
, and
Hasan
,
R.
,
2023
, “
Heat Transfer and Fluid Flow Characteristics of the Passive Method in Double Tube Heat Exchangers: A Critical Review
,”
Int. J. Thermofluids
,
17
, p.
100282
.
9.
Liu
,
S.
, and
Sakr
,
M.
,
2013
, “
A Comprehensive Review on Passive Heat Transfer Enhancements in Pipe Exchangers
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
64
81
.
10.
Omidi
,
M.
,
Farhadi
,
M.
, and
Jafari
,
M.
,
2017
, “
A Comprehensive Review on Double Pipe Heat Exchangers
,”
Appl. Therm. Eng.
,
110
, pp.
1075
1090
.
11.
Webb
,
R. L.
,
Narayanamurthy
,
R.
, and
Thors
,
P.
,
2000
, “
Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness
,”
ASME J. Heat Transfer
,
122
(
1
), pp.
134
142
.
12.
Syed
,
K. S.
,
Ishaq
,
M.
, and
Bakhsh
,
M.
,
2011
, “
Laminar Convection in the Annulus of a Double-Pipe With Triangular Fins
,”
Comput. Fluids
,
44
(
1
), pp.
43
55
.
13.
Ali
,
M. A.
, and
Shehab
,
S. N.
,
2023
, “
Numerical Analysis of Heat Convection Through a Double-Pipe Heat Exchanger: Dimpled Influence
,”
J. Eng. Res.
,
11
(
1
), p.
100016
.
14.
Dastmalchi
,
M.
,
Arefmanesh
,
A.
, and
Sheikhzadeh
,
G. A.
,
2017
, “
Numerical Investigation of Heat Transfer and Pressure Drop of Heat Transfer Oil in Smooth and Micro-Finned Tubes
,”
Int. J. Therm. Sci.
,
121
, pp.
294
304
.
15.
Rajan
,
A.
, and
Prasad
,
L.
,
2022
, “
Performance Investigation of Heat Exchanger Tube Fitted With Hyperbolic-Cut Twisted Tape in Turbulent Flow
,”
J. Mech. Eng. Sci.
,
236
(
14
), pp.
8134
8149
.
16.
Rossetto
,
L.
, and
Diani
,
A.
,
2023
, “
Prediction of Friction Factor and Heat Transfer Coefficient for Single-Phase Forced Convection Inside Microfin Tube
,”
Energies
,
16
(
10
), p.
4053
.
17.
Liu
,
L.
,
Sun
,
T.
,
Cao
,
Y.
,
Yu
,
X.
,
Zhang
,
L.
,
Cao
,
Z.
,
Zhang
,
L.
,
Xu
,
W.
, and
Bu
,
S.
,
2023
, “
Experimental and Numerical Investigation on the Flow and Heat Transfer Characteristics of the Tube With an Integrated Internal Longitudinal Fin
,”
Int. J. Therm. Sci.
,
183
, p.
107857
.
18.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2015
,
Heat and Mass Transfer: Fundamentals & Applications
, 5th ed.,
McGraw-Hill Education
,
New York
.
19.
Iqbal
,
Z.
,
Syed
,
K. S.
, and
Ishaq
,
M.
,
2015
, “
Fin Design for Conjugate Heat Transfer Optimization in Double Pipe
,”
Int. J. Therm. Sci.
,
94
, pp.
242
258
.
20.
Iqbal
,
Z.
,
Syed
,
K. S.
, and
Ishaq
,
M.
,
2013
, “
Optimal fin Shape in Finned Double Pipe with Fully Developed Laminar Flow
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1202
1223
.
21.
Syed
,
K. S.
,
Iqbal
,
Z.
, and
Ishaq
,
M.
,
2011
, “
Optimal Configuration of Finned Annulus in a Double Pipe With Fully Developed Laminar Flow
,”
Appl. Therm. Eng.
,
31
(
8–9
), pp.
1435
1446
.
22.
Mathanraj
,
V.
,
Krishna
,
V. L.
,
Babu
,
J. L. V.
, and
Kumar
,
S. A.
,
2018
, “
Experimental Investigation on Heat Transfer in Double Pipe Heat Exchanger Employing Triangular Fins
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
402
, p.
012137
.
23.
Kahalerras
,
H.
, and
Targui
,
N.
,
2008
, “
Numerical Analysis of Heat Transfer Enhancement in a Double Pipe Heat Exchanger With Porous Fins
,”
Int. J. Numer. Methods Heat Fluid Flow
,
18
(
5
), pp.
593
617
.
24.
Raj
,
R.
,
Lakshman
,
N. S.
, and
Mukkamala
,
Y.
,
2015
, “
Single Phase Flow Heat Transfer and Pressure Drop Measurements in Doubly Enhanced Tubes
,”
Int. J. Therm. Sci.
,
88
, pp.
215
227
.
25.
Kim
,
S.
,
Kim
,
M.
,
Park
,
Y. G.
,
Min
,
J. K.
, and
Ha
,
M. Y.
,
2017
, “
Numerical Investigation of Fluid Flow and Heat Transfer Characteristics in a Helically-Finned Tube
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3271
3284
.
26.
Meyer
,
J. P.
, and
Olivier
,
J. A.
,
2011
, “
Transitional Flow Inside Enhanced Tubes for Fully Developed and Developing Flow With Different Types of Inlet Disturbances: Part I—Adiabatic Pressure Drops
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1587
1597
.
27.
Braga
,
S. L.
, and
Saboya
,
F. E. M.
,
1996
, “
Turbulent Heat Transfer and Pressure Drop in an Internally Finned Equilateral Triangular Duct
,”
Exp. Therm. Fluid. Sci.
,
12
(
1
), pp.
57
64
.
28.
Copetti
,
J. B.
,
Macagnan
,
M. H.
,
de Souza
,
D.
, and
Oliveski
,
R. D. C.
,
2004
, “
Experiments With Micro-Fin Tube in Single Phase
,”
Int. J. Refrig.
,
27
(
8
), pp.
876
883
.
29.
Yu
,
B.
, and
Tao
,
W. Q.
,
2004
, “
Pressure Drop and Heat Transfer Characteristics of Turbulent Flow in Annular Tubes With Internal Wave-Like Longitudinal Fins
,”
Heat Mass transfer
,
40
(
8
), pp.
643
651
.
30.
Zhang
,
L.
,
Guo
,
H.
,
Wu
,
J.
, and
Du
,
W.
,
2012
, “
Compound Heat Transfer Enhancement for Shell Side of Double-Pipe Heat Exchanger by Helical Fins and Vortex Generators
,”
Heat Mass Transfer
,
48
(
7
), pp.
1113
1124
.
31.
Yassin
,
M. A.
,
Shedid
,
M. H.
,
El-Hameed
,
H. M. A.
, and
Basheer
,
A.
,
2018
, “
Heat Transfer Augmentation for Annular Flow Due to Rotation of Inner Finned Pipe
,”
Int. J. Therm. Sci.
,
134
, pp.
653
660
.
32.
Ahmad
,
W.
,
Syed
,
K. S.
,
Ishaq
,
M.
,
Hassan
,
A.
, and
Iqbal
,
Z.
,
2017
, “
Numerical Study of Conjugate Heat Transfer in a Double-Pipe With Exponential Fins Using DGFEM
,”
Appl. Therm. Eng.
,
111
, pp.
1184
1201
.
33.
Pai
,
Y. W.
, and
Yeh
,
R. H.
,
2022
, “
Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of Internal Finned Tubes
,”
Int. J. Heat Mass Transfer
,
183
(
Part B
), p.
122183
.
34.
Braga
,
C. V. M.
, and
Saboya
,
F. E. M.
,
1999
, “
Turbulent Heat Transfer, Pressure Drop and Fin Efficiency in Annular Regions With Continuous Longitudinal Rectangular Fins
,”
Exp. Therm. Fluid. Sci.
,
20
(
2
), pp.
55
65
.
35.
Jalili
,
B.
,
Aghaee
,
N.
,
Jalili
,
P.
, and
Domiri Ganji
,
D.
,
2022
, “
Novel Usage of the Curved Rectangular Fin on the Heat Transfer of a Double-Pipe Heat Exchanger With a Nanofluids
,”
Case Stud. Therm. Eng.
,
35
, p.
102086
.
36.
Ammar Ali
,
M.
,
Sajid
,
M.
,
Uddin
,
E.
,
Bahadur
,
N.
, and
Ali
,
Z.
,
2021
, “
Numerical Analysis of Heat Transfer and Pressure Drop in Helically Micro-Finned Tubes
,”
Processes
,
9
(
5
), p.
754
.
37.
Bellos
,
E.
,
Lykas
,
P.
, and
Tzivanidis
,
C.
,
2022
, “
Heat and Flow Study of the Internally Finned Tubes With Different Fin Geometries
,”
Appl. Syst. Innov.
,
5
(
3
), p.
50
.
38.
Arora
,
A.
, and
Subbarao
,
P. M. V.
,
2023
, “
Augmented Performance and Wake Management in Finned Tube Arrays Through Hierarchical Deployment of Toe-Out Winglets
,”
J. Heat Mass Transfer
,
145
(
12
), p.
121002
.
39.
Arora
,
A.
, and
Subbarao
,
P. M. V.
,
2023
, “
Geometric Parametrization of Toe-Out Type Vortex Generators for Energy-Efficient Capacity Augmentation in Finned-Tube Heat Exchangers
,”
Ther. Sci. Eng. Prog.
,
42
, p.
101936
.
40.
Fluent Inc.
,
2004
, “FLUENT User Guide,”
Fluent Inc.
,
Lebanon, NH
.
41.
Che
,
M.
, and
Elbel
,
S.
,
2022
, “
Comparison of Local and Averaged Air-Side Heat Transfer Coefficients on Fin-and-Tube Heat Exchangers Obtained With Experimental and Numerical Methods
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
7
), p.
071013
.
42.
Oneissi
,
M.
,
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Lemenand
,
T.
,
2019
, “
Inclination Angle Optimization for ‘Inclined Projected Winglet Pair’ Vortex Generator
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011014
.
43.
Chen
,
X.
,
Li
,
N.
,
Zhou
,
X.
, and
Duan
,
Z.
,
2023
, “
Prediction of Heat Transfer for Compact Tube Heat Exchanger Based on Porous Models
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
3
), p.
031002
.
44.
Gnielinski
,
V.
,
2009
, “
Heat Transfer Coefficients for Turbulent Flow in Concentric Annular Ducts
,”
Heat Transfer Eng.
,
30
(
6
), pp.
431
436
.
45.
Iqbal
,
M.
, and
Syed
,
K. S.
,
2011
, “
Thermally Developing Flow in Finned Double-Pipe Heat Exchanger
,”
Int. J. Numer. Methods Fluids
,
65
(
10
), pp.
1145
1159
.
46.
Liu
,
Z.
,
Yue
,
Y.
,
She
,
L.
, and
Fan
,
G.
,
2019
, “
Numerical Analysis of Turbulent Flow and Heat Transfer in Internally Finned Tubes
,”
Front. Energy Res.
,
7
, p.
64
.
47.
Zheng
,
J.
,
Liang
,
Z.
,
Zhang
,
L.
,
Zhou
,
J.
, and
Yan
,
Z.
,
2023
, “
Numerical Study on Thermo-Hydraulic Performance of Enhanced Tube With Crossed Helical Dimples
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
11
), p.
111008
.
48.
Arora
,
A.
, and
Subbarao
,
P. M. V.
,
2023
, “
Integration of Winglet Type Vortex Generators in Finned-Tube Heat Exchangers for a Sizeable Capacity Augmentation
,”
J. Mech. Eng. Sci.
,
238
(
7
), pp.
3067
3083
.
You do not currently have access to this content.