Graphical Abstract Figure

Nanofluid-Enhanced Novel Heat Exchanger for Sustainable Heating

Graphical Abstract Figure

Nanofluid-Enhanced Novel Heat Exchanger for Sustainable Heating

Close modal

Abstract

A novel multi-fluid heat exchanger deployed for simultaneous heating of water and space is experimentally investigated to predict its thermo-hydraulic, exergetic, and sustainability performance for distinct Al2O3, TiO2, and CuO nanofluid (NF) flow of 50 ppm concentration of each through the inserted brazed helix tube (BHT). The input parameters such as flowrates, helix tube diameters, and nanofluid types are varied throughout the experiments to evaluate their effect on output performance parameters i.e., Nusselt number (Nu), friction factor ( f), entropy generation number (Ns), JF factor (JF), exergy efficiency (ƐE), and sustainability index (SI). The NF flowing through the BHT is the heating fluid that simultaneously heated the cold water, and cold air flowing through the outer shell and inner conduit of the BHT respectively. A distinct Nusselt number correlation for turbulent nanofluid flow inside BHT was developed, compared, and validated reasonably with the current result. For Al2O3 NF at a Reynolds number of 5698 with a 1/2-in. diameter helix tube, the best results for JF, ƐE, and SI are found to be 0.009, 0.72, and 3.53, respectively. Furthermore, for Al2O3 and TiO2 NF at a Reynolds number of 14,250 and a helix tube diameter of 3/8 in. and 1/2 in., f, and Ns are found to be 0.0047 and 0.043, respectively are minimum. It is observed that the use of Al2O3 NF, higher helix tube diameters, and lower flowrates all make the proposed heating application more sustainable.

References

1.
Shrivastava
,
D.
, and
Ameel
,
T. A.
,
2004
, “
Three-Fluid Heat Exchangers With Three Thermal Communications. Part B: Effectiveness Evaluation
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3867
3875
.
2.
Jamshidi
,
N.
,
Farhadi
,
M.
,
Ganji
,
D. D.
, and
Sedighi
,
K.
,
2013
, “
Experimental Analysis of Heat Transfer Enhancement in Shell and Helical Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
644
652
.
3.
Li
,
Z. X.
,
Khaled
,
U.
,
Al-Rashed
,
A. A. A. A.
,
Goodarzi
,
M.
,
Sarafraz
,
M. M.
, and
Meer
,
R.
,
2020
, “
Heat Transfer Evaluation of a Micro Heat Exchanger Cooling With Spherical Carbon-Acetone Nanofluid
,”
Int. J. Heat Mass Transfer
,
149
, p.
119124
.
4.
Tian
,
Z.
,
Abdollahi
,
A.
,
Shariati
,
M.
,
Amindoust
,
A.
,
Arasteh
,
H.
,
Karimipour
,
A.
,
Goodarzi
,
M.
, and
Bach
,
Q. V.
,
2020
, “
Turbulent Flows in a Spiral Double-Pipe Heat Exchanger: Optimal Performance Conditions Using an Enhanced Genetic Algorithm
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
1
), pp.
39
53
.
5.
Apmann
,
K.
,
Fulmer
,
R.
,
Scherer
,
B.
,
Good
,
S.
,
Wohld
,
J.
, and
Vafaei
,
S.
,
2022
, “
Nanofluid Heat Transfer: Enhancement of the Heat Transfer Coefficient Inside Microchannels
,”
Nanomaterials
,
12
(
4
), p.
615
.
6.
Aulds
,
D. D.
, and
Barron
,
R. F.
,
1967
, “
Three-Fluid Heat Exchanger Effectiveness
,”
Int. J. Heat Mass Transfer
,
10
(
10
), pp.
1457
1462
.
7.
Willis
,
N. C.
, and
Chapman
,
A. J.
,
1968
, “
Analysis of Three-Fluid, Crossflow Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
90
(
3
), pp.
333
338
.
8.
Mohapatra
,
T.
,
Padhi
,
B. N.
, and
Sahoo
,
S. S.
,
2017
, “
Experimental Investigation of Convective Heat Transfer in an Inserted Coiled Tube Type Three Fluid Heat Exchanger
,”
Appl. Therm. Eng.
,
117
, pp.
297
307
.
9.
Mohapatra
,
T.
,
Sahoo
,
S. S.
, and
Padhi
,
B. N.
,
2019
, “
Analysis, Prediction and Multi-response Optimization of Heat Transfer Characteristics of a Three Fluid Heat Exchanger Using Response Surface Methodology and Desirability Function Approach
,”
Appl. Therm. Eng.
,
151
, pp.
536
555
.
10.
Mohapatra
,
T.
,
Padhi
,
B. N.
, and
Sahoo
,
S. S.
,
2019
, “
Analytical Investigation and Performance Optimization of a Three Fluid Heat Exchanger With Helical Coil Insertion for Simultaneous Space Heating and Water Heating
,”
Heat Mass Transfer
,
55
(
6
), pp.
1723
1740
.
11.
Mohapatra
,
T.
,
Ray
,
S.
,
Sahoo
,
S. S.
, and
Padhi
,
B. N.
,
2019
, “
Numerical Study on Heat Transfer and Pressure Drop Characteristics of Fluid Flow in an Inserted Coiled Tube Type Three Fluid Heat Exchanger
,”
Heat Transfer Res.
,
48
(
4
), pp.
1440
1465
.
12.
Mohapatra
,
T.
,
Sahoo
,
S. S.
, and
Padhi
,
B. N.
,
2021
, “
Exergetic Study of a Three-Fluid Heat Exchanger Used in Solar Flat Plate Collector System
,”
Lect. Notes Mech. Eng.
, pp.
209
219
.
13.
Mohapatra
,
T.
,
Sahoo
,
S. S.
,
Mishra
,
S. S.
,
Mishra
,
P.
, and
Biswal
,
D. K.
,
2022
, “
Performance Investigation of a Three Fluid Heat Exchanger Used in Domestic Heating Applications
,”
Int. J. Automot. Mech. Eng.
,
19
(
2
), pp.
9693
9708
.
14.
Pordanjani
,
A. H.
,
Aghakhani
,
S.
,
Afrand
,
M.
,
Mahmoudi
,
B.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2019
, “
An Updated Review on Application of Nanofluids in Heat Exchangers for Saving Energy
,”
Energy Convers. Manage.
,
198
, p.
111886
.
15.
Afzal
,
A.
,
Islam
,
M. T.
,
Kaladgi
,
A. R.
,
Manokar
,
A. M.
,
Samuel
,
O. D.
,
Mujtaba
,
M. A.
,
Soudagar
,
M. E. M.
,
Fayaz
,
H.
, and
Ali
,
H. M.
,
2022
, “
Experimental Investigation on the Thermal Performance of Inserted Helical Tube Three-Fluid Heat Exchanger Using Graphene/Water Nanofluid
,”
J. Therm. Anal. Calorim.
,
147
(
8
), pp.
5087
5100
.
16.
Raei
,
B.
,
2021
, “
Statistical Analysis of Nanofluid Heat Transfer in a Heat Exchanger Using Taguchi Method
,”
J. Heat Mass Transfer Res.
,
8
(
1
), pp.
29
38
.
17.
Batmaz
,
E.
, and
Sandeep
,
K. P.
,
2005
, “
Calculation of Overall Heat Transfer Coefficients in a Triple Tube Heat Exchanger
,”
Heat Mass Transfer
,
41
(
3
), pp.
271
279
.
18.
Mahdi
,
Q. S.
,
Fattah
,
S. A.
, and
Jumia
,
F.
,
2014
, “
Numerical Investigation to Evaluate the Performance of Helical Coiled Tube Heat Exchanger With and Without Nanofluid
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
56369
, p.
V08CT09A008
.
19.
Goodarzi
,
M.
,
Kherbeet
,
A. S.
,
Afrand
,
M.
,
Sadeghinezhad
,
E.
,
Mehrali
,
M.
,
Zahedi
,
P.
,
Wongwises
,
S.
, and
Dahari
,
M.
,
2016
, “
Investigation of Heat Transfer Performance and Friction Factor of a Counter-Flow Double-Pipe Heat Exchanger Using Nitrogen-Doped, Graphene-Based Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
16
23
.
20.
Khairul
,
M. A.
,
Saidur
,
R.
,
Rahman
,
M. M.
,
Alim
,
M. A.
,
Hossain
,
A.
, and
Abdin
,
Z.
,
2013
, “
Heat Transfer and Thermodynamic Analyses of a Helically Coiled Heat Exchanger Using Different Types of Nanofluids
,”
Int. J. Heat Mass Transfer
,
67
, pp.
398
403
.
21.
Kannadasan
,
N.
,
Ramanathan
,
K.
, and
Suresh
,
S.
,
2012
, “
Comparison of Heat Transfer and Pressure Drop in Horizontal and Vertical Helically Coiled Heat Exchanger With CuO/Water Based Nano Fluids
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
64
70
.
22.
Almasri
,
B.
,
Mohapatra
,
T.
, and
Mishra
,
S. S.
,
2023
, “
Experimental Investigation and Performance Optimization of Thermo-Hydraulic and Exergetic Characteristics of a Novel Multi-Fluid Heat Exchanger
,”
J. Therm. Anal. Calorim.
,
148
(
24
), pp.
14051
14068
.
23.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
24.
Almasri
,
B.
,
Mishra
,
S. S.
, and
Mohapatra
,
T.
,
2023
, “
Thermo-Hydraulic Performance Augmentation in Residential Heating Applications Using a Novel Multi-fluid Heat Exchanger With Helical Coil Tube Insertion
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
238
(
2
), pp.
334
347
.
25.
Almasri
,
B.
,
Mohapatra
,
T.
,
Joardar
,
H.
, and
Mishra
,
S. S.
,
2024
, “
Experimental Investigation and Multi-objective Optimization of a Novel Multi-fluid Heat Exchanger Performances Using Response Surface Methodology and Genetic Algorithm
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
46
(
7
), pp.
1
18
.
26.
Miansari
,
M.
,
Valipour
,
M. A.
,
Arasteh
,
H.
, and
Toghraie
,
D.
,
2020
, “
Energy and Exergy Analysis and Optimization of Helically Grooved Shell and Tube Heat Exchangers by Using Taguchi Experimental Design
,”
J. Therm. Anal. Calorim.
,
139
(
5
), pp.
3151
3164
.
27.
dos Mascarenhas
,
J. S.
,
Chowdhury
,
H.
,
Thirugnanasambandam
,
M.
,
Chowdhury
,
T.
, and
Saidur
,
R.
,
2019
, “
Energy, Exergy, Sustainability, and Emission Analysis of Industrial Air Compressors
,”
J. Clean. Prod.
,
231
, pp.
183
195
.
28.
Salimpour
,
M. R.
,
2009
, “
Heat Transfer Coefficients of Shell and Coiled Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
203
207
.
29.
Moody
,
L. F.
,
1944
, “
Friction Factors for Pipe Flow
,”
ASME J. Fluids Eng.
,
66
(
8
), pp.
671
678
.
30.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4757
4767
.
31.
Al-Abbas
,
A. H.
,
Mohammed
,
A. A.
, and
Hassoon
,
A. S.
,
2021
, “
Exergy Analysis of Shell and Helical Coil Heat Exchanger and Design Optimization
,”
Heat Mass Transfer
,
57
(
5
), pp.
797
806
.
32.
El-Genk
,
M. S.
, and
Schriener
,
T. M.
,
2016
, “
A Review and Correlations for Convection Heat Transfer and Pressure Losses in Toroidal and Helically Coiled Tubes
,”
Heat Transfer Eng.
,
38
(
5
), pp.
447
474
.
33.
Salem
,
M. R.
,
Elshazly
,
K. M.
,
Sakr
,
R. Y.
, and
Ali
,
R. K.
,
2015
, “
Experimental Investigation of Coil Curvature Effect on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011005
.
34.
Xin
,
R. C.
, and
Ebadian
,
M. A.
,
1997
, “
The Effects of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristics in Helical Pipes
,”
ASME J. Heat Transfer-Trans. ASME
,
119
(
3
), pp.
467
473
.
You do not currently have access to this content.