Nanofluids are suspensions of metallic or nonmetallic nanopowders in base liquid and can be employed to increase heat transfer rate at various applications. In the present study, forced convective heat transfer in an Al2O3/water nanofluid has experimentally been compared to that of pure water in automobile radiator. Five different concentrations of nanofluids in the range of 0–1.0 vol. % have been prepared by the addition of Al2O3 nanoparticles into the water. The test fluid flows through the automobile radiator consisted of 33 vertical tubes with elliptical cross section and air makes a cross flow inside the tube bank with constant speed. The test fluid flow rate has been changed in the range of 3 l/min to 8 l/min to have fully turbulent regime. Obtained results demonstrate that increasing the fluid circulating rate can improve the heat transfer performance. The application of the nanofluid with low concentration can enhance heat transfer efficiency up to 40–45% in comparison with pure water. The increase in heat transfer coefficient due to presence of nanoparticles is higher than the prediction of single phase heat transfer Dittus Boelter correlation used with nanofluid properties. These results can be implemented to optimize the size of an automobile radiator.

References

1.
Kulkarni
,
D. P.
,
Vajjha
,
R. S.
,
Das
,
D. S.
, and
Oliva
,
D.
,
2008
, “
Application of Aluminum Oxide Nanofluids in Diesel Electric Generator as Water Coolant
,”
Appl. Therm. Eng.
,
28
(
14-15
), pp.
1774
1781
.10.1016/j.applthermaleng.2007.11.017
2.
Yu
,
W.
,
France
,
D. M.
,
Choi
,
S. U. S.
, and
Routbort
,
J. L.
,
2007
, “
Review and Assessment of Nanofluid Technology for Transportation and Other Applications
” Energy System Division, Argonne National Laboratory, Argonne, Report No. ANL/ESD./07-9.
3.
Choi
,
S.
,
2006
, “
Nanofluids for Improved Efficiency in Cooling Systems
,”
Heavy Vehicle Systems Review
,
Argonne National Laboratory
,
Argonne, IL
.
4.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Jamnani
,
M. S.
, and
Hoseini
,
S. H.
,
2011
, “
Improving the Cooling Performance of Automobile Radiator With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
31
, pp.
1833
1838
.10.1016/j.applthermaleng.2011.02.029
5.
Pak
,
B. C.
, and
Cho
,
I. Y.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Sub-Micron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
, pp.
151
170
.10.1080/08916159808946559
6.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into the Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5181
5188
.10.1016/j.ijheatmasstransfer.2004.07.012
7.
Heris
,
S. Z.
,
Etemad
,
S. G.
, and
Nasr Esfahany
,
M.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
529
535
.10.1016/j.icheatmasstransfer.2006.01.005
8.
Lai
,
W. Y.
,
Duculescu
,
B.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2006
, “
Convective Heat Transfer With Nanofluids in a Single 1.02 mm Tube
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition (AMECE 2006)
.
9.
Jung
,
J. Y.
,
Oh
,
H. S.
, and
Kwak
,
Y. H.
,
2006
, “
Forced Convective Heat Transfer of Nanofluids in Micro Channels
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition (IAMECE 2006)
.
10.
Sharma
,
K. V.
,
Syam Sundar
,
L.
, and
Sharma
,
P. K.
,
2009
, “
Estimation of Heat Transfer Coefficient and Friction Factor in the Transition Flow With Low Volume Concentration of Al2O3 Nanofluid Flowing in a Circular Tube and With Twisted Tape Insert
,”
Int. Commun. Heat Mass Transfer
,
36
, pp.
503
507
.10.1016/j.icheatmasstransfer.2009.02.011
11.
Leong
,
K. Y.
,
Saidur
,
R.
,
Mahlia
,
T. M. I.
, and
Yau
,
Y. H.
,
2012
, “
Modelling of Shell and Tube Heat Recovery Exchanger Operated With Nanofluid Based Coolants
,”
Int. J. Heat Mass Transfer
,
55
, pp.
808
816
.10.1016/j.ijheatmasstransfer.2011.10.027
12.
Saeedinia
,
M.
,
Akhavan-Behabadi
,
M. A.
, and
Razi
,
P.
,
2012
, “
Thermal and Rheological Characteristics of CuO-Base Oil Nanofluid Flow Inside a Circular Tube
,”
Int. Commun. Heat Mass Transfer
,
39
, pp.
152
159
.10.1016/j.icheatmasstransfer.2011.08.001
13.
Syam Sundar
,
L.
,
Naik
,
M. T.
,
Sharma
,
K. V.
,
Singh
,
M. K.
,
And Siva Reddy
,
T. ch.
,
2012
, “
Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in A Tube With Fe3O4 Magnetic Nanofluid
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
65
71
.10.1016/j.expthermflusci.2011.10.004
14.
Pak
,
B. C.
, and
Cho
,
I. Y.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispered Fluids With Sub-Micron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
, pp.
151
170
.10.1080/08916159808946559
15.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3701
3708
.10.1016/S0017-9310(99)00369-5
16.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids; a Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
, pp.
167
171
.10.1023/A:1024438603801
17.
Drew
,
D. A.
, and
Passman
,
S. L.
,
1999
,
Theory of Multicomponent Fluids
,
Springer
,
Berlin
.
18.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Heat Transfer in Automobile Radiators of Tubular Type
,
University of California Press
,
Berkeley, CA
, pp.
13
18
.
19.
Seider
,
E. N.
, and
Tate
,
G. E.
,
1936
, “
Heat Transfer and Pressure Drop of Liquid in Tubes
,”
Ind. Eng. Chem.
,
28
(
12
), pp.
1429
1435
.10.1021/ie50324a027
20.
Maiga.
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
,
Roy
,
G.
, and
Mare
,
T.
,
2006
, “
Heat Transfer Enhancement in Turbulent Tube Flow Using Al2O3 Nanoparticles Suspension
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
(
3
), pp.
275
292
.10.1108/09615530610649717
21.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
.10.1063/1.1756684
22.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Impact Analysis of Nanoparticles Motion Mechanisms on the Thermal Conductivity of Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1111
1118
.10.1016/j.icheatmasstransfer.2005.05.014
You do not currently have access to this content.