A detailed parametric study of film-cooling effectiveness was carried out on a turbine blade platform. The platform was cooled by purge flow from a simulated stator–rotor seal combined with discrete hole film-cooling. The cylindrical holes and laidback fan-shaped holes were accessed in terms of film-cooling effectiveness. This paper focuses on the effect of coolant-to-mainstream density ratio on platform film-cooling (DR = 1 to 2). Other fundamental parameters were also examined in this study—a fixed purge flow of 0.5%, three discrete-hole film-cooling blowing ratios between 1.0 and 2.0, and two freestream turbulence intensities of 4.2% and 10.5%. Experiments were done in a five-blade linear cascade with inlet and exit Mach number of 0.27 and 0.44, respectively. Reynolds number of the mainstream flow was 750,000 and was based on the exit velocity and chord length of the blade. The measurement technique adopted was the conduction-free pressure sensitive paint (PSP) technique. Results indicated that with the same density ratio, shaped holes present higher film-cooling effectiveness and wider film coverage than the cylindrical holes, particularly at higher blowing ratios. The optimum blowing ratio of 1.5 exists for the cylindrical holes, whereas the effectiveness for the shaped holes increases with an increase of blowing ratio. Results also indicate that the platform film-cooling effectiveness increases with density ratio but decreases with turbulence intensity.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis Group
,
New York
.
2.
Chyu
,
M. K.
,
2001
, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
27
36
.10.1111/j.1749-6632.2001.tb05840.x
3.
Simon
,
T.
, and
Piggush
,
J.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
.10.2514/1.16344
4.
Langston
,
L.
,
1980
, “
Cross Flow in Turbine Cascade Passage
,”
J. Eng. Power
,
102
(
1
), pp.
866
874
.10.1115/1.3230352
5.
Langston
,
L.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
6.
Wang
,
H.
,
Olson
,
S.
,
Goldstein
,
R.
, and
Eckert
,
E.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomachinery
,
119
(1), pp.
1
8
.10.1115/1.2841006
7.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomachinery
,
112
(3), pp.
488
496
.10.1115/1.2927684
8.
Jabbari
,
M.
,
Marston
,
K.
,
Eckert
,
E.
, and
Goldstein
,
R.
,
1996
, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomachinery
,
118
(2), pp.
278
284
.10.1115/1.2836637
9.
Friedrichs
,
S.
,
Hodson
,
H.
, and
Dawes
,
W.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomachinery
,
118
(
4
), pp.
613
621
.10.1115/1.2840916
10.
Friedrichs
,
S.
,
Hodson
,
H.
, and
Dawes
,
W.
,
1998
, “
Design of an Improved Endwall Film-cooling Configuration
,” ASME Paper No. 98-GT-483.
11.
Vogel
,
G.
,
Wagner
,
G.
, and
Bölcs
,
A.
,
2002
, “
Transient Liquid Crystal Technique Combined With PSP for Improved Film Cooling Measurements
,”
Proceedings 10th International Symposium on Flow Performance
,
Kyoto, Japan
.
12.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomachinery
,
128
(1), pp.
43
52
.10.1115/1.2098788
13.
Granser
,
D.
, and
Schulenberg
,
T.
,
1990
, “
Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud
,” ASME Paper No. 90-GT-95.
14.
Roy
,
R.
,
Squires
,
K.
,
Gerendas
,
M.
,
Song
,
S.
,
Howe
,
W.
, and
Ansari
,
A.
,
2000
, “
Flow and Heat Transfer at the Hub Endwall of Inlet Vane Passages—Experiments and Simulations
,” ASME Paper No. 2000-GT-198.
15.
Burd
,
S. W.
,
Satterness
,
C.
, and
Simon
,
T.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall On Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,” ASME Paper No. 2000-GT-200.
16.
Oke
,
R.
,
Simon
,
T.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
Y. L.
, and
Chyu
,
M.
,
2001
, “
Measurements Over a Film-Cooled, Contoured Endwall with Various Coolant Injection Rates
,” ASME Paper No. 2001-GT-0140, p.
0140
.
17.
Oke
,
R. A.
, and
Simon
,
T. W.
,
2002
, “
Film Cooling Experiments with Flow Introduced Upstream of a First Stage Nozzle Guide Vane through Slots of Various Geometries
,” ASME Paper No. GT-2002-30169.
18.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomachinery
,
123
(4), pp.
730
738
.10.1115/1.1400113
19.
Zhang
,
L.
, and
Moon
,
H. K.
,
2003
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step
,” ASME Paper No. GT2003-38319.
20.
Wright
,
L. M.
,
Blake
,
S. A.
,
Rhee
,
D. H.
, and
Han
,
J. C.
,
2009
, “
Effect of Upstream Wake With Vortex on Turbine Blade Platform Film Cooling With Simulated Stator–Rotor Purge Flow
,”
ASME J. Turbomachinery
,
131
(2), p.
021017
.10.1115/1.2952365
21.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M.
, and
Han
,
J.
,
2010
, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomachinery
,
132
(4), p.
041001
.10.1115/1.3142860
22.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomachinery
,
123
(4), pp.
720
-
729
.10.1115/1.1397308
23.
Wright
,
L. M.
,
Blake
,
S. A.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform With Stator–Rotor Purge and Discrete Film Hole Flows
,”
ASME J. Turbomachinery
,
130
(3), p.
031015
.10.1115/1.2777186
24.
Suryanarayanan
,
A.
,
Mhetras
,
S.
,
Schobeiri
,
M.
, and
Han
,
J.
,
2009
, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomachinery
,
131
(
1
), p.
011014
.10.1115/1.2752184
25.
Kadotani
,
K.
, and
Goldstein
,
R.
,
1979
, “
On the Nature of Jets Entering a Turbulent Flow Part A: Jet-Mainstream Interaction
,”
J. Eng. Power
,
101
, pp.
459
465
.10.1115/1.3446601
26.
Jumper
,
G.
,
Elrod
,
W.
, and
Rivir
,
R.
,
1991
, “
Film Cooling Effectiveness in High-Turbulence Flow
,”
ASME J. Turbomachinery
,
113
(3), pp.
479
483
.10.1115/1.2927899
27.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
River
,
R. B.
,
1996
, “
The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomachinery
,
118
(
4
), pp.
814
825
.10.1115/1.2840939
28.
Schmidt
,
D.
, and
Bogard
,
D.
,
1996
, “
Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling
,” ASME Paper No. 96-GT-462.
29.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomachinery
,
130
(3), p.
031007
.10.1115/1.2720493
30.
Salvadori
,
S.
,
Ottanelli
,
L.
,
Jonsson
,
M.
,
Ott
,
P.
, and
Martelli
,
F.
,
2012
, “
Investigation of High-Pressure Turbine Endwall Film-Cooling Performance Under Realistic Inlet Conditions
,”
J. Propul. Power
,
28
(
4
), pp.
799
810
.10.2514/1.B34365
31.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomachinery
,
133
(4), p.
041003
.10.1115/1.4002951
32.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator–Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomachinery
,
131
(4), p.
041004
.10.1115/1.3068327
33.
Gao
,
Z.
,
Narzary
,
D.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2007
, “
Upstream Vortex Effects on Turbine Blade Platform Film Cooling With Typical Stator–Rotor Purge Flow
,” ASME Paper No. IMECE2007-41717.
34.
Narzary
,
D. P.
,
Liu
,
K. C.
, and
Han
,
J. C.
,
2009
, “
Influence of Coolant Density on Turbine Blade Platform Film-Cooling
,” ASME Paper No. GT-2009-59342.
35.
McLachlan
,
B.
, and
Bell
,
J.
,
1995
, “
Pressure-Sensitive Paint in Aerodynamic Testing
,”
Exp. Therm. Fluid Sci.
,
10
(
4
), pp.
470
485
.10.1016/0894-1777(94)00123-P
36.
Rallabandi
,
A. P.
,
Grizzle
,
J.
, and
Han
,
J. C.
,
2011
, “
Effect of Upstream Step on Flat Plate Film Cooling Effectiveness Using PSP
,”
ASME J. Turbomachinery
,
133
(4), p.
041024
.10.1115/1.4002422
37.
Jones
,
T.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.10.1016/S0142-727X(99)00017-X
38.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Köbke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,” ASME Paper No. GT2009-60306.
39.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
40.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley-Interscience
,
New York
.
You do not currently have access to this content.