A theoretical analysis of both fully flooded rolling traction and film thickness in an EHL line contact has been presented in Part I of this paper. The effect of viscous shear heating was investigated and the results predict a significant reduction in both fully flooded film thickness and rolling traction, relative to the isothermal case, as speed is increased. In this part of the Series, the analysis is extended to consider the calculation of starved rolling traction and film thickness, including viscous shear heating of the lubricant in the inlet region. An approximate equation has been developed, which predicts both the isothermal and non isothermal starved film thickness for all conditions of inlet boundary distance, rolling speed, load, geometry, material constants and lubricant properties. The results show that both rolling traction and film thickness are significantly reduced from the starved isothermal case. For the starved isothermal case, the theoretical analysis for the film thickness agrees closely with experimental data and published empirical formula by Wymer and Cameron, (1974) and the theoretical work of Wolveridge, et al. (1971).

This content is only available via PDF.
You do not currently have access to this content.