Abstract
With the aim of seeking a more reasonable solution for the squeeze film force for large amplitude motion with low viscosity fluids, an elliptical velocity profile and the corresponding squeeze film force equations are derived for a two dimensional rectangular plate model using three different approximation methods. Through comparisons with existing theoretical studies which use parabolic velocity profiles for moderate to large Reynolds numbers, it is shown that the squeeze film model using the elliptical profile may be closer to reality. The force level of the dominant temporal inertia component using the elliptical profile (with either the iterative or the energy methods) is between that obtained using the traditional parabolic profile with the momentum method and that obtained with either the iterative or the energy methods.