A deterministic mixed lubrication model, governing the interface between a moving smooth rigid surface and a stationary rough elastic surface, has been developed. Both the normal and shear deformations of the elastic surface are considered, as well as interasperity cavitation. Utilizing an analogy between the hydrodynamic lubrication (with cavitation) problem and the asperity contact problem, a generalized computational formulation is derived and a unique solution scheme constructed to solve these seemingly different problems. The model has been applied to the rotary lip seal, and used to predict the performance characteristics over a range of shaft speeds. [S0742-4787(00)04101-1]

1.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determine Effects of Three Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
, pp.
12
17
.
2.
Elrod
,
H. G.
,
1979
, “
A General Theory for Laminar Lubrication with Reynolds Roughness
,”
ASME J. Tribol.
,
101
, pp.
8
14
.
3.
Tripp
,
J. H.
,
1983
, “
Surface roughness Effects in Hydrodynamic Lubrication: The flow Factor Method
,”
ASME J. Lubr. Technol.
,
105
, pp.
458
465
.
4.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
296
, pp.
300
319
.
5.
Lee
,
S. C.
, and
Cheng
,
H. S.
,
1992
, “
On the Load-Average Gap Relation Between Two Rough Contacts with Longitudinal Roughness
,”
STLE Tribology Transactions
,
35
, pp.
523
529
.
6.
Ren
,
N.
, and
Lee
,
Si C.
,
1993
, “
Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method
,”
ASME J. Tribol.
,
115
, pp.
597
601
.
7.
Ren
,
N.
, and
Lee
,
Si C.
,
1994
, “
The Effects of Surface Roughness and Topography on the Contact Behavior of Elastic Bodies
,”
ASME J. Tribol.
,
116
, pp.
804
881
.
8.
Ju
,
Y.
, and
Farris
,
T. N.
,
1996
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
,
118
, pp.
320
328
.
9.
Stanley
,
H. M.
, and
Kato
,
T.
,
1997
, “
An FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol.
,
119
, pp.
481
485
.
10.
Yamaguchi
,
A.
, and
Matsuoka
,
H.
,
1992
, “
A Mixed Lubrication Model Applicable to Bearing/Seal Parts of Hydraulic Equipment
,”
ASME J. Tribol.
,
114
, pp.
116
121
.
11.
Zhu
,
D.
,
Hu
,
Y.
,
Cheng
,
H. S.
,
Arai
,
T.
, and
Hamai
,
K.
,
1993
, “
A Numerical Analysis for Piston Skirt in Mixed Lubrication-Part II: Deformation Considerations
,”
ASME J. Tribol.
,
115
, pp.
115
125
.
12.
Wang
,
Q.
, and
Cheng
,
H. S.
,
1995
, “
A Mixed Lubrication Model for Journal Bearings with a Soft Coating, Part II: Flash Temperature Analysis and Its Application to Tin Coated Al-Si Bearings
,”
STLE Tribology Transactions
,
38
, pp.
517
524
.
13.
Chang
,
L.
,
1995
, “
Deterministic Modeling and Numerical Simulation of Lubrication Between Rough Surfaces—a review of Recent Developments
,”
Wear
,
184
, pp.
155
160
.
14.
Wang
,
Q.
,
Shi
,
F.
, and
Lee
,
Si. C.
,
1997
, “
A Mixed-Lubrication Study of Journal Bearing Conformal Contacts
,”
ASME J. Tribol.
,
119
, pp.
456
461
.
15.
Shi
,
F.
, and
Wang
,
Q.
,
1998
, “
A Mixed-TEHD Model for Journal Bearing Conformal Contacts-Part I: Model Formulation and Approximation of Heat Transfer Considering Asperity Contact
,”
ASME J. Tribol.
,
120
, pp.
198
205
.
16.
Wang
,
Q.
,
Shi
,
F.
, and
Lee
,
Si. C.
,
1998
, “
A Mixed-TEHD Model for Journal Bearing Conformal Contact-Part II: Contact, Film Thickness and Performance Analysis
,”
ASME J. Tribol.
,
120
, pp.
206
213
.
17.
Ruan
,
B.
,
Salant
,
R. F.
, and
Green
,
I.
,
1997
, “
Mixed-lubrication Model of Liquid/Gas Mechanical Face Seals
,”
STLE Tribology Transactions
,
40
, pp.
647
657
.
18.
Harp
,
S. R.
, and
Salant
,
R. F.
,
1998
, “
Analysis of Mechanical Face Seal Behavior During Transient Operation
,”
ASME J. Tribol.
,
120
, pp.
191
197
.
19.
Lin
,
H. S.
,
Marault
,
N.
, and
Wilson
,
W. R.
,
1998
, “
Mixed-Lubrication Model for Cold Strip Rolling-Part I: Theoretical
,”
STLE Tribology Transactions
,
41
, pp.
317
326
.
20.
Lubrecht
,
A. A.
,
Ten Napel
,
W. E.
, and
Bosma
,
R.
,
1988
, “
The Influence of Longitudinal and Transverse Roughness on the Elastohydrodynamic Lubrication of Circular Contacts
,”
ASME J. Tribol.
,
110
, pp.
421
426
.
21.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
1994
, “
Transient Analysis of Surface Features in an EHL Line Contact In the Case of Sliding
,”
ASME J. Tribol.
,
116
, pp.
186
193
.
22.
Chang
,
L.
,
Webster
,
M. N.
, and
Jackson
,
A.
,
1994
, “
A Line-Contact Micro-EHL Model With Three-Dimensional Surface Topography
,”
ASME J. Tribol.
,
116
, pp.
21
28
.
23.
Zhu
,
D.
, and
Ai
,
X.
,
1997
, “
Point Contact EHL Based on Optically Measured Three-Dimensional Rough Surfaces
,”
ASME J. Tribol.
,
119
, pp.
375
384
.
24.
Hua
,
D. Y.
,
Qiu
,
L.
, and
Cheng
,
H. S.
,
1997
, “
Modeling of Lubrication in Micro Contact
,”
Tribol. Lett.
,
3
, pp.
81
86
.
25.
Jiang, X., Hua, D. Y., Cheng, H. S., Ai, X., and Lee, S. C., 1998, “A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact,” ASME/STLE Tribology Conference, Toronto, ASME Preprint 98-TRIB-54.
26.
Payvar
,
P.
, and
Salant
,
R. F.
,
1992
, “
A Computational Method for Cavitation in a Wavy Mechanical Seal
,”
ASME J. Tribol.
,
114
, pp.
199
204
.
27.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Tribol.
,
103
, pp.
350
354
.
28.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis.
29.
Cook, R. D., Malkus, D. S., and Plesha, M. E., 1989, Concepts and Applications of Finite Element Analysis, Wiley.
30.
Salant, R. F., 1999, “Theory of Lubrication of Elastomeric Rotary Shaft Seals,” IMechE Journal of Engineering Tribology, in press.
You do not currently have access to this content.