A deterministic mixed lubrication model, governing the interface between a moving smooth rigid surface and a stationary rough elastic surface, has been developed. Both the normal and shear deformations of the elastic surface are considered, as well as interasperity cavitation. Utilizing an analogy between the hydrodynamic lubrication (with cavitation) problem and the asperity contact problem, a generalized computational formulation is derived and a unique solution scheme constructed to solve these seemingly different problems. The model has been applied to the rotary lip seal, and used to predict the performance characteristics over a range of shaft speeds. [S0742-4787(00)04101-1]
Issue Section:
Technical Papers
1.
Patir
, N.
, and Cheng
, H. S.
, 1978
, “An Average Flow Model for Determine Effects of Three Dimensional Roughness on Partial Hydrodynamic Lubrication
,” ASME J. Lubr. Technol.
, 100
, pp. 12
–17
.2.
Elrod
, H. G.
, 1979
, “A General Theory for Laminar Lubrication with Reynolds Roughness
,” ASME J. Tribol.
, 101
, pp. 8
–14
.3.
Tripp
, J. H.
, 1983
, “Surface roughness Effects in Hydrodynamic Lubrication: The flow Factor Method
,” ASME J. Lubr. Technol.
, 105
, pp. 458
–465
.4.
Greenwood
, J. A.
, and Williamson
, J. B. P.
, 1966
, “Contact of Nominally Flat Surfaces
,” Proc. R. Soc. London, Ser. A
, 296
, pp. 300
–319
.5.
Lee
, S. C.
, and Cheng
, H. S.
, 1992
, “On the Load-Average Gap Relation Between Two Rough Contacts with Longitudinal Roughness
,” STLE Tribology Transactions
, 35
, pp. 523
–529
.6.
Ren
, N.
, and Lee
, Si C.
, 1993
, “Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method
,” ASME J. Tribol.
, 115
, pp. 597
–601
.7.
Ren
, N.
, and Lee
, Si C.
, 1994
, “The Effects of Surface Roughness and Topography on the Contact Behavior of Elastic Bodies
,” ASME J. Tribol.
, 116
, pp. 804
–881
.8.
Ju
, Y.
, and Farris
, T. N.
, 1996
, “Spectral Analysis of Two-Dimensional Contact Problems
,” ASME J. Tribol.
, 118
, pp. 320
–328
.9.
Stanley
, H. M.
, and Kato
, T.
, 1997
, “An FFT-Based Method for Rough Surface Contact
,” ASME J. Tribol.
, 119
, pp. 481
–485
.10.
Yamaguchi
, A.
, and Matsuoka
, H.
, 1992
, “A Mixed Lubrication Model Applicable to Bearing/Seal Parts of Hydraulic Equipment
,” ASME J. Tribol.
, 114
, pp. 116
–121
.11.
Zhu
, D.
, Hu
, Y.
, Cheng
, H. S.
, Arai
, T.
, and Hamai
, K.
, 1993
, “A Numerical Analysis for Piston Skirt in Mixed Lubrication-Part II: Deformation Considerations
,” ASME J. Tribol.
, 115
, pp. 115
–125
.12.
Wang
, Q.
, and Cheng
, H. S.
, 1995
, “A Mixed Lubrication Model for Journal Bearings with a Soft Coating, Part II: Flash Temperature Analysis and Its Application to Tin Coated Al-Si Bearings
,” STLE Tribology Transactions
, 38
, pp. 517
–524
.13.
Chang
, L.
, 1995
, “Deterministic Modeling and Numerical Simulation of Lubrication Between Rough Surfaces—a review of Recent Developments
,” Wear
, 184
, pp. 155
–160
.14.
Wang
, Q.
, Shi
, F.
, and Lee
, Si. C.
, 1997
, “A Mixed-Lubrication Study of Journal Bearing Conformal Contacts
,” ASME J. Tribol.
, 119
, pp. 456
–461
.15.
Shi
, F.
, and Wang
, Q.
, 1998
, “A Mixed-TEHD Model for Journal Bearing Conformal Contacts-Part I: Model Formulation and Approximation of Heat Transfer Considering Asperity Contact
,” ASME J. Tribol.
, 120
, pp. 198
–205
.16.
Wang
, Q.
, Shi
, F.
, and Lee
, Si. C.
, 1998
, “A Mixed-TEHD Model for Journal Bearing Conformal Contact-Part II: Contact, Film Thickness and Performance Analysis
,” ASME J. Tribol.
, 120
, pp. 206
–213
.17.
Ruan
, B.
, Salant
, R. F.
, and Green
, I.
, 1997
, “Mixed-lubrication Model of Liquid/Gas Mechanical Face Seals
,” STLE Tribology Transactions
, 40
, pp. 647
–657
.18.
Harp
, S. R.
, and Salant
, R. F.
, 1998
, “Analysis of Mechanical Face Seal Behavior During Transient Operation
,” ASME J. Tribol.
, 120
, pp. 191
–197
.19.
Lin
, H. S.
, Marault
, N.
, and Wilson
, W. R.
, 1998
, “Mixed-Lubrication Model for Cold Strip Rolling-Part I: Theoretical
,” STLE Tribology Transactions
, 41
, pp. 317
–326
.20.
Lubrecht
, A. A.
, Ten Napel
, W. E.
, and Bosma
, R.
, 1988
, “The Influence of Longitudinal and Transverse Roughness on the Elastohydrodynamic Lubrication of Circular Contacts
,” ASME J. Tribol.
, 110
, pp. 421
–426
.21.
Venner
, C. H.
, and Lubrecht
, A. A.
, 1994
, “Transient Analysis of Surface Features in an EHL Line Contact In the Case of Sliding
,” ASME J. Tribol.
, 116
, pp. 186
–193
.22.
Chang
, L.
, Webster
, M. N.
, and Jackson
, A.
, 1994
, “A Line-Contact Micro-EHL Model With Three-Dimensional Surface Topography
,” ASME J. Tribol.
, 116
, pp. 21
–28
.23.
Zhu
, D.
, and Ai
, X.
, 1997
, “Point Contact EHL Based on Optically Measured Three-Dimensional Rough Surfaces
,” ASME J. Tribol.
, 119
, pp. 375
–384
.24.
Hua
, D. Y.
, Qiu
, L.
, and Cheng
, H. S.
, 1997
, “Modeling of Lubrication in Micro Contact
,” Tribol. Lett.
, 3
, pp. 81
–86
.25.
Jiang, X., Hua, D. Y., Cheng, H. S., Ai, X., and Lee, S. C., 1998, “A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact,” ASME/STLE Tribology Conference, Toronto, ASME Preprint 98-TRIB-54.
26.
Payvar
, P.
, and Salant
, R. F.
, 1992
, “A Computational Method for Cavitation in a Wavy Mechanical Seal
,” ASME J. Tribol.
, 114
, pp. 199
–204
.27.
Elrod
, H. G.
, 1981
, “A Cavitation Algorithm
,” ASME J. Tribol.
, 103
, pp. 350
–354
.28.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis.
29.
Cook, R. D., Malkus, D. S., and Plesha, M. E., 1989, Concepts and Applications of Finite Element Analysis, Wiley.
30.
Salant, R. F., 1999, “Theory of Lubrication of Elastomeric Rotary Shaft Seals,” IMechE Journal of Engineering Tribology, in press.
Copyright © 2000
by ASME
You do not currently have access to this content.