Wire bonding is a popular joining technique in microelectronic interconnect. In this study, the effects of applied load, surface roughness, welding power and welding time on bonding strength were investigated using an ultrasonic bonding machine and a pull tester. In order to relate bonding strength to contact phenomena, the asperity model was used to compute real contact area and flash temperature between the wire and the pad. The experimental results show that a decrease in load or ultrasonic power produces a larger weldable range in which the combination of operation parameters allow the wire and pad to be welded. Regardless of roughness and applied loads, the bond strength increases to a maximum with increases in the welding time, and then decreases to fracture between wire and pad. The theoretical results and experimental observations indicate that bond strength curves can be divided into three periods. The contact temperature plays an important role in bonding strength in the initial period, and surface roughness is the dominant factor in the final period. The maximum bonding strength point occurs in the initial period for different loads and surface roughness values. Our results show that bond strength of ultrasonic wire bonding can be explained based on the input energy per real contact area.

1.
Neppiras, E. A., 1965, “
Ultrasonic Welding of Metals,” Ultrasonics, No. 3, pp. 128–135.
2.
Joshi
,
K. C.
,
1971
, “
The Formation of Ultrasonic Wire Bonds Between Metals
,”
Weld. J. (Miami)
,
50
, pp.
840
858
.
3.
Harman, G. G., and Leedy, K. O., 1972, “An Experimental Model of the Microelectronic Ultrasonic Bonding Mechanisms,” in 10th Annu. Proc. of Reliability Physics Symp., pp. 49–56.
4.
Harman
,
G. G.
, and
Albers
,
J.
,
1977
, “
The Ultrasonic Welding Mechanism as Applied to Aluminum and Gold-Wire Bonding in Microelectronics
,”
IEEE Transactions, Parts, Hybrids, Package
,
PHP-13
, pp.
406
412
.
5.
Krzanowski
,
J. E.
,
1990
, “
A Transmission Electron Microscopy Study of Ultrasonic Wire Bonding
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
, pp.
176
181
.
6.
Ramsey, T. H., and Alfaro, C., 1997, “High-Frequency Enhancement for Ambient Temperature Ball Bonding,” Semicond. Int., August, pp. 93–96.
7.
Uthe, P. M., 1969, “Variables Affecting Weld Quality in Ultrasonic Aluminum Wire Bonding,” Solid State Technol., pp. 54–62.
8.
Dushkes, S. Z., 1973, “A Design Study of Ultrasonic Bonding Tip,” IBM J. Res. Dev., pp. 230–235.
9.
Sheaffer, M., and Levine, L., 1991, “How to Optimize and Control the Wire Bonding Process: Part II,” Solid State Technol., pp. 67–70.
10.
Krzanowski
,
J. E.
, and
Murdeshwar
,
N.
,
1990
, “
Deformation and Bonding Processes in Aluminum Ultrasonic Wire Wedge Bonding
,”
J. Electron. Mater.
,
19
, No.
9
, pp.
219
928
.
11.
Hu
,
S. J.
,
Lim
,
G. E.
, and
Foong
,
K. P.
,
1991
, “
Study of Temperature Parameter on the Thermosonic Gold Wire Bonding of High-speed CMOS
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
14
, pp.
855
858
.
12.
Guzman, S. M., and Mahaney, M., 1992, “The Bond Shear Test: An Application for the Reduction of Common Causes of Gold Ball Process Variation,” IEEE/IRPS, pp. 251–257.
13.
Harman, G. G., 1983, “The Microelectronic Ball Bond Shear Test: A Critical Review and Comprehensive Guide to its Use,” Proc. ISHM, pp. 127–141.
14.
Jellison, J. L., and Wagner, J. A., 1979, “The Role of Surface Contaminants in the Deformation Welding of Gold to Thick and Thin Film,” Proc. 29th IEEE Electronic Component Conference, pp. 336–345.
15.
Shirai, Y., Otsuka, K., Araki, T., Seki, I., Kikuchi, K., Fujita, N., and Miwa, T., 1993, “High Reliability Wire Bonding Technology by the 120 kHz Frequency of Ultrasonic,” ICEMM Proceedings ’93, pp. 366–377.
16.
Greenwood
,
J. A.
, and
Willamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surface
,”
Proc. R. Soc. London, Ser. A
,
A295
, pp.
300
319
.
17.
Pullen
,
J.
, and
Williamson
,
J. B. P.
,
1972
, “
On the Plastic Contact of Rough Surfaces
,”
Proc. R. Soc. London, Ser. A
,
A327
, pp.
157
173
.
18.
McCool
,
J. I.
,
1987
, “
Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
264
270
.
19.
McCool
,
J. I.
,
1988
, “
The Distribution of Microcontact Area, Load, Pressure, and Flash Temperature Under the Greenwood-Williamson Model
,”
ASME J. Tribol.
,
110
, pp.
106
111
.
20.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
110
, pp.
50
56
.
21.
Horng
,
J. H.
,
1998
, “
An Elliptic Elastic-Plastic Microcontact Model for Rough Surfaces
,”
ASME J. Tribol.
,
121
, pp.
82
89
.
22.
Blok, H., 1937, “Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions,” Proc. General Discussion on Lubrication, Vol. 2, Institution of Mechanical Engineers, London, pp. 222– 235.
23.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature at the Sliding Surfaces
,”
J. Proc. R. Soc. N. S. W.
,
66
, pp.
203
224
.
24.
Archard
,
J. F.
,
1959
, “
The Temperature of Rubbing Surfaces
,”
Wear
,
2
, pp.
438
455
.
25.
Francis
,
H. A.
,
1970
, “
Interfacial Temperature Distribution within a Sliding Hertzian Contact
,”
ASLE Trans.
,
14
, pp.
41
54
.
26.
Kuhlmann-Wilsdorf
,
D.
,
1987
, “
Temperatures at Interfacial Contact Spots: Dependence on Velocity and on Role Reversal of Two Materials in Sliding Contact
,”
ASME J. Tribol.
,
109
, pp.
321
329
.
27.
McCool
,
J. I.
, and
John
,
J.
,
1988
, “
Flash Temperature on the Asperity Scale and Scuffing
,”
ASME J. Tribol.
,
110
, pp.
659
663
.
28.
Kuhlmann-Wilsdorf
,
D.
,
1986
, “
Sample Calculation of Flash Temperatures at a Silver-Graphite Electric Contact Sliding on Copper
,”
Wear
,
107
, pp.
71
90
.
29.
Tabor, D., 1950, The Hardness of Metals, Oxford University Press, United Kingdom.
30.
Hussey
,
B. W.
,
Arjavalingam
,
G.
Gupta
,
A.
Chalco
,
P.
, and
Tong
,
H.
,
1995
, “
Intrinsic Thermocouple Monitor for Laser Wirebonding
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
18
, No.
5
, pp.
206
214
.
You do not currently have access to this content.