An elastic-plastic contact analysis based on a finite element model and real surface topographies was performed to elucidate the evolution of deformation at the head-disk interface. The topographies of the head and disk surfaces were represented by an equivalent profile generated using a modified two-variable Weierstrass-Mandelbrot function, with fractal parameters determined from images of head and disk surfaces. A region of the equivalent rough surface profile was selected for analysis based on topography scale considerations and contact simulation results. The evolution of plasticity and the likelihood of cracking in the overcoat and the magnetic layer are interpreted in light of results for the subsurface von Mises equivalent stress, equivalent plastic strain, and maximum first principal stress. The finite element model provides insight into the elastic-plastic deformation behavior of the layered medium in terms of the thickness, mechanical properties, and residual stress in the carbon overcoat.

1.
Hertz, H., 1882, “U¨ber die Beru¨hrung fester elastischer Ko¨rper,” (“On the Contact of Elastic Solids”), J. reine und angewandte Mathematik, 92, pp. 156–171. (English translation in Miscellaneous Papers by H. Hertz, Eds., Jones and Schott, MacMillan, London, UK, 1986).
2.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
3.
Meijers
,
P.
,
1968
, “
The Contact Problem of a Rigid Cylinder on an Elastic Layer
,”
Appl. Sci. Res.
,
18
, pp.
353
383
.
4.
Alblas
,
J. B.
, and
Kuipers
,
M.
,
1970
, “
On the Two Dimensional Problem of a Cylindrical Stamp Pressed into a Thin Elastic Layer
,”
Acta Mech.
,
9
, pp.
292
311
.
5.
Hardy
,
C.
,
Baronet
,
C. N.
, and
Tordion
,
G. V.
,
1971
, “
The Elastoplastic Indentation of a Half-Space by a Rigid Sphere
,”
Int. J. Numer. Methods Eng.
,
3
, pp.
451
462
.
6.
Ling, F. F., and Lai, W. M., 1980, “Surface Mechanics of Layered Media,” Solid Contact and Lubrication, H. S. Cheng, and L. M. Keer, eds., AMD-39, pp. 27–50.
7.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
8.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
, pp.
313
327
.
9.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.
10.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
, pp.
812
823
.
11.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
,
116
, pp.
824
832
.
12.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1995
, “
A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces
,”
ASME J. Tribol.
,
117
, pp.
203
215
.
13.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
, pp.
3617
3624
.
14.
Komvopoulos
,
K.
, and
Ye
,
N.
,
2001
, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
,
123
, pp.
632
640
.
15.
Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, Freeman, New York, NY.
16.
Komvopoulos
,
K.
,
2000
, “
Head-Disk Interface Contact Mechanics for Ultrahigh Density Magnetic Recording
,”
Wear
,
238
, pp.
1
11
.
17.
Komvopoulos
,
K.
,
1989
, “
Elastic-Plastic Finite Element Analysis of Indented Layered Media
,”
ASME J. Tribol.
,
111
, pp.
430
439
.
18.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
,
1995
, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part II: Subsurface Results
,”
ASME J. Appl. Mech.
,
62
, pp.
29
42
.
You do not currently have access to this content.