By applying the extended version of Stroh’s formalism, the two-dimensional thermoelastic problem for a semi-infinite anisotropic elastic half-plane is formulated. The steady-state heat transfer condition is assumed and the technique of analytical continuation is employed; the formulation leads to the Hilbert problem, which can be solved in closed form. The general solutions due to different kinds of thermal and mechanical boundary conditions are obtained. The results show that unlike the two-dimensional thermoelastic problem for an isotropic media, where a simply-connected elastic body in a state of plane strain or plane stress remains stress free if the temperature distribution is harmonic and the boundaries are free of traction, the stress within the semi-infinite anisotropic media will generally not equal zero even if the boundary is free of traction.

1.
Barber
,
J. R.
,
1976
, “
Some Thermoelastic Contact Problems Involving Frictional Heating
,”
Q. J. Mech. Appl. Math.
,
29
, pp.
2
13
.
2.
Barber, J. R., “Thermoelastic Contact Problems,” 1975, in Mechanics of Contact Between Deformable Bodies, de Pater and Kalker, eds., Delft University Press.
3.
Barber
,
J. R.
,
1971
, “
Solution of Heated Punch Problem by Point Source Methods
,”
Int. J. Eng. Sci.
,
9
, pp.
1165
1169
.
4.
Barber
,
J. R.
,
1973
, “
Indentation of the Semi-Infinite Elastic Solid by a Hot Sphere
,”
Int. J. Mech. Sci.
,
15
, pp.
813
819
.
5.
Comninou
et al.
,
1981
, “
Heat Conduction Through a Flat Punch
,”
ASME J. Appl. Mech.
,
48
, pp.
871
875
.
6.
Chao
,
C. K.
,
Wu
,
S. P.
, and
Gao
,
B.
,
1999
, “
Thermoelastic Contact Between a Flat Punch and an Anisotropic Half-Space
,”
ASME J. Appl. Mech.
,
66
, pp.
548
552
.
7.
Stroh
,
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
, pp.
625
646
.
8.
Stroh
,
A. N.
,
1962
, “
Steady-State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
,
41
, pp.
77
103
.
9.
Lekhnitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Body, Holden-Day, San Francisco.
10.
Lekhnitskii, S. G., 1968, Anisotropic Plates, translation by S. W. Tsai and T. Cheron, Gordon and Breach, New York.
11.
Suo
,
Z.
,
1990
, “
Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media
,”
Proc. R. Soc. London, Ser. A
,
A427
, pp.
331
358
.
12.
Muskhelishvili, N. I., 1954, Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff, Groningen.
13.
Fan
,
H.
, and
Keer
,
L. M.
,
1994
, “
Two-Dimensional Contact on an Anisptropic Elastic Half-Space
,”
ASME J. Appl. Mech.
,
61
, pp.
250
255
.
14.
Clements
,
D. L.
,
1973
, “
Thermal Stress in an Anisotropic Elastic Half-Space
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
24
, pp.
332
337
.
15.
Hwu
,
C.
,
1990
, “
Thermal Stresses in an Anisotropic Plate Distributed by an Insulated Elliptic Hole or Crack
,”
ASME J. Appl. Mech.
,
57
, pp.
916
922
.
16.
Nowacki, W., 1962, Thermoelasticity, Addison Wesley, Reading, MA.
17.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. I
,”
Phys. Rev.
,
37
, pp.
405
426
.
18.
Ting, T. C. T., 1996, Anisotropic Elasticity: Theory and Applications, Oxford Science Publication, New York.
19.
Wu
,
C. H.
,
1984
, “
Plane Anisotropic Thermoelasticity
,”
ASME J. Appl. Mech.
,
51
, pp.
724
726
.
20.
Hwu
,
C.
,
1992
, “
Thermoelastic Interface Crack Problems in Dissimilar Anisotropic Media
,”
Int. J. Solids Struct.
,
29
, pp.
2077
2090
.
21.
Chao
,
C. K.
, and
Chang
,
R. C.
,
1992
, “
Thermal Interface Crack Problems in Dissimilar Anisotropic Media
,”
J. Appl. Phys.
,
72
(
7
), pp.
2598
2604
.
22.
Muskhelishvili, N. I., 1953, Singular Integral Equations, Noordhoff, Groningen.
23.
Chadwick
,
P.
, and
Ting
,
T. C. T.
,
1987
, “
On the Structure and Invariance of the Barnett-Lothe Tensors
,”
Q. J. Mech. Appl. Math.
,
45
, pp.
419
427
.
24.
Ting
,
T. C. T.
,
1986
, “
Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites
,”
Int. J. Solids Struct.
,
22
, pp.
965
983
.
25.
Boley, B. A., and Weiner, J. H., 1960, Theory of Thermal Stresses, Wiley, New York.
26.
Dongye
,
C.
, and
Ting
,
T. C. T.
,
1989
, “
Explicit Expressions of Barnett-Lothe Tensors and Their Associated Tensors for Orthotropic Materials
,”
Q. J. Mech. Appl. Math.
,
47
, pp.
723
734
.
27.
Kollar, L. P., and Springer, G. S., 2003, Mechanics of Composite Structures, Cambridge University Press, Cambridge.
You do not currently have access to this content.