Experimental evidence in the literature suggests that foil bearing-supported rotors can suffer from subsynchronous vibration. While dry friction between top foil and bump foil is thought to provide structural damping, subsynchronous vibration is still an unresolved issue. The current paper aims to shed new light onto this matter and discusses the impact of various design variables on stable foil bearing-supported rotor operation. It is shown that, while a time domain integration of the equations of motion of the rotor coupled with the Reynolds equation for the fluid film is necessary to quantify the evolution of the rotor orbit, the underlying mechanism and the onset speed of instability can be predicted by coupling a reduced order foil bearing model with a rigid-body, linear, rotordynamic model. A sensitivity analysis suggests that structural damping has limited effect on stability. Further, it is shown that the location of the axial feed line of the top foil significantly influences the bearing load capacity and stability. The analysis indicates that the static fluid film pressure distribution governs rotordynamic stability. Therefore, selective shimming is introduced to tailor the unperturbed pressure distribution for improved stability. The required pattern is found via multiobjective optimization using the foil bearing-supported rotor model. A critical mass parameter is introduced as a measure for stability, and a criterion for whirl instability onset is proposed. It is shown that, with an optimally shimmed foil bearing, the critical mass parameter can be improved by more than two orders of magnitude. The optimum shim patterns are summarized for a variety of foil bearing geometries with different L/D ratios and different degrees of foil compliance in a first attempt to establish more general guidelines for stable foil bearing design. At low compressibility (Λ < 2), the optimum shim patterns vary little with bearing geometry; thus, a generalized shim pattern is proposed for low compressibility numbers.

References

1.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,” ASME Paper No. 1997-GT-347.
2.
Moore
,
J. J.
,
Lerche
,
A.
,
Allison
,
T.
,
Ransom
,
D. L.
, and
Lubell
,
D.
,
2010
, “
Development of a High Speed Gas Bearing Test Rig to Measure Rotordynamic Force Coefficients
,” ASME Paper No. GT2010-23217.
3.
Lubell
,
D. R.
,
Wade
,
J. L.
,
Chauhan
,
N. S.
, and
Nourse
,
J. G.
,
2008
, “
Identification and Correction of Rotor Instability in an Oil-Free Gas Turbine
,” ASME Paper No. GT2008-50305.
4.
Hou
,
Y.
,
Zhu
,
Z. H.
, and
Chen
,
C. Z.
,
2004
, “
Comparative Test on Two Kinds of New Compliant Foil Bearing for Small Cryogenic Turbo-Expander
,”
Cryogenics
,
44
, pp.
69
72
.10.1016/j.cryogenics.2003.08.002
5.
Heshmat
,
H.
,
1994
, “
Advancement in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capability
,”
ASME J. Tribol.
,
116
, pp.
287
295
.10.1115/1.2927211
6.
Lubell
,
D.
,
Corte
,
C. D.
, and
Stanford
,
M.
,
2006
, “
Test Evolution and Oil-Free Engine Experience of a High Temperature Foil Air Bearing Coating
,” ASME Paper No. GT2006-90572.
7.
Heshmat
,
H.
,
2000
, “
Operation of Foil Bearings Beyond the Bending Critical Mode
,”
ASME J. Tribol.
,
122
, pp.
192
198
.10.1115/1.555342
8.
Walton
,
J. F.
, and
Heshmat
,
H.
,
2002
, “
Application of Foil Bearings to Turbomachinery Including Vertical Operation
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
1032
1041
.10.1115/1.1392986
9.
Kim
,
T. H.
,
Lee
,
J.
,
Kim
,
C. H.
, and
Lee
,
Y. B.
,
2010
, “
Rotordynamic Performance of an Oil-Free Turbocharger Supported on Gas Foil Bearings: Effects of an Assembly Radial Clearance
,” ASME Paper No. GT2010-23243.
10.
Heshmat
,
H.
,
Saphiro
,
W.
, and
Gray
,
S.
,
1982
, “
Development of Foil Journal Bearings for High Load Capacity and High Speed Whirl Stability
,”
ASME J. Lubr. Technol.
,
104
(
2
), pp.
149
156
.10.1115/1.3253173
11.
Lee
,
Y.
,
Kim
,
T.
,
Kim
,
C.
,
Lee
,
N.
, and
Choi
,
D.
,
2004
, “
Dynamic Characteristics of a Flexible Rotor System Supported by a Viscoelastic Foil Bearing
,”
Tribol. Int.
,
37
, pp.
679
687
.10.1016/S0301-679X(03)00013-6
12.
San Andrés
,
L.
,
Chirathadam
,
T. A.
, and
Kim
,
T. H.
,
2010
, “
Measurement of Structural Stiffness and Damping Coefficients in a Metal Mesh Foil Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
032503
.10.1115/1.3159379
13.
San Andrés
,
L.
, and
Chirathadam
,
T. A.
,
2010
, “
Identification of Rotordynamic Force Coefficients of a Metal Mesh Foil Bearing Using Impact Load Excitations
,” ASME Paper No. GT2010-22440.
14.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2008
, “
Forced Nonlinear Response of Gas Foil Bearing Supported Rotors
,”
Tribol. Int.
,
41
, pp.
704
715
.10.1016/j.triboint.2007.12.009
15.
Rubio
,
D.
, and
San Andrés
,
L.
,
2006
, “
Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
128
, pp.
653
660
.10.1115/1.2056047
16.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2006
, “
Limits for High-Speed Operation of Gas Foil Bearings
,”
ASME J. Tribol.
,
128
, pp.
670
673
.10.1115/1.2197851
17.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2008
, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
012504
.10.1115/1.2770494
18.
Pan
,
C. H. T.
,
1964
, “
Spectral Analysis of Gas Bearing Systems for Stability Studies
,” MTI Technical Report No. 64TR58.
19.
Pan
,
C. H. T.
, and
Kim
,
D.
,
2007
, “
Stability Characteristics of a Rigid Rotor Supported by a Gas-Lubricated Spiral-Groove Conical Bearing
,”
ASME J. Tribol.
,
129
, pp.
375
383
.10.1115/1.2647443
20.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
,
105
, pp.
647
655
.10.1115/1.3254697
21.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2007
, “
Analysis of Advanced Gas Foil Bearings With Piecewise Linear Elastic Supports
,”
Tribol. Int.
,
40
, pp.
1239
1245
.10.1016/j.triboint.2007.01.022
22.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2009
, “
Analysis of Gas Foil Bearings Integrating FE Top Foil Models
,”
Tribol. Int.
,
42
, pp.
111
120
.10.1016/j.triboint.2008.05.003
23.
Carpino
,
M.
, and
Talmage
,
G.
,
2003
, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
STLE Tribol. Trans.
,
46
, pp.
560
565
.10.1080/10402000308982664
24.
Carpino
,
M.
, and
Talmage
,
G.
,
2006
, “
Prediction of Rotor Dynamic Coefficients in Gas Lubricated Foil Journal Bearings With Corrugated Sub-Foils
,”
STLE Tribol. Trans.
,
49
, pp.
400
409
.10.1080/10402000600781416
25.
Ruscitto
,
D.
,
Cormick
,
J. M.
, and
Gray
,
S.
,
1978
, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine I—Journal Bearing Performance
,” NASA Technical Report No. CR-135368.
26.
Faria
,
M. T. C.
, and
San Andrés
,
L.
,
2000
, “
On the Numerical Modeling of High-Speed Hydrodynamic Gas Bearings
,”
ASME J. Tribol.
,
122
, pp.
124
130
.10.1115/1.555335
27.
Faria
,
M. T. C.
,
2001
, “
Some Performance Characteristics of High Speed Gas Lubricated Herringbone Groove Journal Bearings
,”
JSME Int. J., Ser. C
,
44
, pp.
775
781
.10.1299/jsmec.44.775
28.
Rubio
,
D.
, and
San Andrés
,
L.
,
2007
, “
Structural Stiffness, Dry Friction Coefficient, and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
494
502
.10.1115/1.2360602
29.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2009
, “
Effect of Side Feed Pressurization on the Dynamic Performance of Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
012501
.10.1115/1.2966421
30.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2010
, “
Integrated Design and Optimization of Gas Bearing Supported Rotors
,”
ASME J. Mech. Des.
,
132
, p.
051007
.10.1115/1.4001381
31.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2009
, “
Experimental Investigation of a Direct Driven Radial Compressor for Domestic Heat Pumps
,”
Int. J. Refrig.
,
32
, pp.
1918
1928
.10.1016/j.ijrefrig.2009.07.006
32.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2010
, “
The Effect of Real Gas on the Properties of Herringbone Grooved Journal Bearings
,”
Tribol. Int.
,
43
, pp.
1602
1614
.10.1016/j.triboint.2010.03.006
33.
Lund
,
J. W.
,
1968
, “
Calculation of Stiffness and Damping Properties of Gas Bearings
,”
ASME J. Lubr. Technol.
,
90
, pp.
783
803
.10.1115/1.3601723
34.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2009
, “
Effects of a Mechanical Preload on the Dynamic Force Response of Gas Foil Bearings: Measurements and Model Predictions
,”
STLE Tribol. Trans.
,
52
, pp.
569
580
.10.1080/10402000902825721
35.
San Andrés
,
L.
,
Rubio
,
D.
, and
Kim
,
T. H.
,
2007
, “
Rotordynamic Performance of a Rotor Supported on Bump Type Foil Gas Bearings: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
850
857
.10.1115/1.2718233
36.
Kim
,
D.
,
Creary
,
A.
,
Chang
,
S. S.
, and
Kim
,
J. H.
,
2009
, “
Mesoscale Foil Gas Bearings for Palm-Sized Turbomachinery: Design, Manufacturing, and Modeling
,”
ASME J. Eng. Gas Turbines Power
,
131
, p.
042502
.10.1115/1.3077643
37.
Sim
,
K.
,
Lee
,
Y.
,
Kim
,
T. H.
, and
Lee
,
J.
,
2012
, “
Rotordynamic Performance of Shimmed Gas Foil Bearings for Oil-Free Turbochargers
,”
ASME J. Tribol.
,
134
, p.
031102
.10.1115/1.4005892
38.
Molyneaux
,
A.
,
Leyland
,
G. B.
, and
Favrat
,
D.
,
2010
, “
Environomic Multi-Objective Optimization of a District Heating Network Considering Centralized and Decentralized Heat Pumps
,”
Energy
,
35
, pp.
751
758
.10.1016/j.energy.2009.09.028
39.
Ng
,
C. W.
,
1965
, “
Linearized Ph Stability Theory for Finite Length, Self-Acting Gas-Lubricated, Plain Journal Bearings
,”
J. Basic Eng.
,
87
, pp.
559
567
.10.1115/1.3650606
You do not currently have access to this content.