Considering the influence of the inertia item on temperature distribution of multidisk friction pairs in hydroviscous drive (HVD), transient temperature models are derived with the aim of revealing the effect of engagement pressure, lubricant viscosity, viscosity–temperature correlation, surface roughness and the ratio of inner and outer radius of disks on temperature distribution. The results indicate that unsteady temperature gradient can be avoided by matching the suitable materials for multidisk friction pairs. The average temperature for the case of neglecting the inertia item is lower than that of the case of including the inertia item. It is shown that during the soft-start, the temperature along the radial direction achieves its peak value near the outlet and keeps decreasing along the axial direction; while after the engaging process, the temperature distribution tends to be uniform. It is also shown that the decrease of engagement pressure, surface roughness and the ratio of inner and outer radius of disks can reduce temperature gradient effectively as well as the increase of lubricant viscosity. The average temperature for the case of including the viscosity–temperature correlation is much higher than that for other cases.

References

1.
Davis
,
C. L.
,
Sadeghi
,
F.
, and
Krousgrill
,
C. M.
,
2000
, “
A Simplified Approach to Modeling Thermal Effects in Wet Clutch Engagement: Analytical and Experimental Comparison
,”
ASME J. Tribol.
,
122
(
1
), pp.
110
118
.10.1115/1.555370
2.
Berger
,
E. J.
,
Sadeghi
,
F.
, and
Krousgrill
,
C. M.
,
1997
, “
Analytical and Numerical Modeling of Engagement of Rough Permeable Grooved Wet Clutches
,”
ASME J. Tribol.
,
119
(
1
), pp.
143
148
.10.1115/1.2832450
3.
Mansouri
,
M.
,
Holgerson
,
M.
,
Khonsari
,
M. M.
, and
Aung
,
W.
,
2001
, “
Thermal and Dynamic Characterization of Wet Clutch Engagement With Provision for Drive Torque
,”
ASME J. Tribol.
,
123
(
2
), pp.
313
323
.10.1115/1.1329856
4.
Zagrodzki
,
P.
,
Lam
,
K.
,
Bahkali
,
E.
, and
Barber
,
J.
,
2001
, “
Nonlinear Transient Behavior of a Sliding System With Frictionally Excited Thermoelastic Instability
,”
ASME J. Tribol.
,
123
(
4
), pp.
699
708
.10.1115/1.1353180
5.
Burton
,
R. A.
,
Nerlikar
,
V.
, and
Kilaparti
,
S. R.
,
1973
, “
Thermoelastic Instability in a Seal-Like Configuration
,”
Wear
,
24
(
2
), pp.
177
178
.10.1016/0043-1648(73)90230-5
6.
Lee
,
K.
, and
Barber
,
J.
,
1993
, “
Frictionally Excited Thermoelastic Instability in Automotive Disk Brakes
,”
ASME J. Tribol.
,
115
(
4
), pp.
607
614
.10.1115/1.2921683
7.
Zagrodzki
,
P.
, and
Truncone
,
S.
,
2003
, “
Generation of Hot Spots in a Wet Multidisk Clutch During Short-Term Engagement
,”
Wear
,
254
(5–6), pp.
474
491
.10.1016/S0043-1648(03)00019-X
8.
Zagrodzki
,
P.
, and
Macey
,
J. P.
,
2000
, “
Theoretical and Experimental Study of Hot Spotting in Frictional Clutches and Brakes
,”
5th International Tribology Conference
,
Nagasaki
, Japan, October 29–November 2, pp.
1931
1936
.
9.
Jen
,
T. C.
, and
Nemecek
,
D. J.
,
2008
, “
Thermal Analysis of a Wet-Clutch Subjected to a Constant Energy Engagement
,”
Int. J. Heat Mass Transfer
,
51
(
7-8)
, pp.
1757
1769
.10.1016/j.ijheatmasstransfer.2007.07.009
10.
Marklund
,
P.
,
Mäki
,
R.
,
Larsson
,
R.
,
Höglunda
,
E.
,
Khonsarib
,
M. M.
, and
Jangb
,
J.
,
2007
, “
Thermal Influence on Torque Transfer of Wet Clutches in Limited Slip Differential Applications
,”
Tribol. Int.
,
40
(
5
), pp.
876
884
.10.1016/j.triboint.2006.09.004
11.
Tatara
,
R. A.
, and
Payvar
,
P.
,
2002
, “
Multiple Engagement Wet Clutch Heat Transfer Model
,”
Numer. Heat Transfer, Part A
,
42
(
3
), pp.
215
231
.10.1080/10407780290059512
12.
Yang
,
Y.
,
Lam
,
R. C.
,
Chen
,
Y. F.
, and
Yabe
,
H.
,
1996
, “
Modeling of Heat Transfer and Fluid Hydrodynamic for a Multidisc Wet Clutch
,”
SAE
International Paper No. 950898. 10.4271/950898
13.
Yang
,
Y.
,
Lam
,
R. C.
, and
Fujii
,
T.
,
1998
, “
Prediction of Torque Response During the Engagement of Wet Friction Clutch
,”
SAE
International Paper No. 981097. 10.4271/981097
14.
Gear
,
G. W.
,
1971
,
Numerical Initial Value Problems in Ordinary Differential Equations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
1999
, “
Thermal Characteristics of a Wet Clutch
,”
ASME J. Tribol.
,
121
(
3
), pp.
610
617
.10.1115/1.2834111
16.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
1999
, “
Thermoelastic Instability Including Surface Roughness Effects
,”
ASME J. Tribol.
,
121
(
4
), pp.
648
658
.10.1115/1.2834118
17.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
2000
, “
Thermoelastic Instability With Consideration of Surface Roughness and Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
122
(
4
), pp.
725
732
.10.1115/1.1288215
18.
Holgerson
,
M.
,
2000
, “
Optimizing the Smoothness and Temperatures of a Wet Clutch Engagement Through Control of the Normal Force and Drive Torque
,”
ASME J. Tribol.
,
122
(
1
), pp.
119
125
.10.1115/1.555334
19.
Holgerson
,
M.
,
1999
, “
Engagement Behavior of a Paper-Based Wet Clutch-Part 1: Influence of Drive Torque
,”
Proc. Inst. Mech. Eng., Part D
,
213
(
4
), pp.
341
348
.10.1243/0954407991526900
20.
Holgerson
,
M.
,
1997
, “
Apparatus for Measurement of Engagement Characteristics of a Wet Clutch
,”
Wear
,
213
(
1–2
), pp.
140
147
.10.1016/S0043-1648(97)00202-0
21.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
Average Flow Model for Determining Effects of Three Dimension Roughness on Partial Hydrodynamic Lubrication
,”
J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.10.1115/1.3453103
22.
Shuangmei
,
Z.
,
Gregory
,
H. E.
, and
Lokeswarappa
,
D. R.
,
2008
, “
Behavior of a Composite Multidisk Clutch Subjected to Mechanical and Frictionally Excited Thermal Load
,”
Wear
,
264
(11–12), pp.
1059
1068
.10.1016/j.wear.2007.08.012
23.
Ingram
,
M.
,
Reddyhoff
,
T.
, and
Spikes
,
H.
,
2011
, “
Thermal Behavior of a Slipping Wet Clutch Contact
,”
Tribol. Lett.
,
41
(
1
), pp.
23
32
.10.1007/s11249-010-9669-2
24.
Zagrodzki
,
P.
,
1985
, “
Numerical Analysis of Temperature Fields and Thermal Stresses in the Friction Discs of a Multidisk Wet Clutch
,”
Wear
,
101
(
3
), pp.
255
271
.10.1016/0043-1648(85)90080-8
25.
Xie
,
F. W.
, and
Hou
,
Y. F.
,
2011
, “
Oil Film Hydrodynamic Load Capacity of Hydro-Viscous Drive With Variable Viscosity
,”
Ind. Lubr. Tribol.
,
63
(
3
), pp.
210
215
.10.1108/00368791111126635
26.
Xie
,
F. W.
,
Hou
,
Y. F.
, and
Yang
,
P.
,
2011
, “
Drive Characteristics of Viscous Oil Film Considering Temperature Effect
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
044502
.10.1115/1.4004007
You do not currently have access to this content.