This paper presents a theoretical model for the forcing function generated on the structure as a rolling element negotiates a spall-like defect on the inner race, considered to be a moving race. The negotiation of defect has been seen as a sequence of events for the purpose of understanding the physics behind this negotiation. Such an analysis has not been attempted in the literature and thus forms the basic contribution in this work. Defects are assumed to generate two events; one at the leading edge and other at the trailing edge. The entry event at the leading edge is modeled using contact mechanics and is a function of load, speed, and curvature of defect edge whereas impact event, modeled using the principles of mechanics, is a function of load, speed, size of defect, and curvature of defect edge. The vibratory response of the nonlinear rotor bearing system subject to such excitation is simulated numerically using fourth-order Runge Kutta method and analyzed in both time and frequency domains. The modeling results provide insight into the physical mechanism which is not measured in practice and highlight the weakness of entry pulse in comparison to the impact pulse, also observed by several other researchers in their experimental tests. Defects of varying severity were simulated and tested to validate the proposed model and the acceptable correlation of amplitudes at the characteristic defect frequency provides a preliminary multi-event theoretical model. The developed model has therefore laid a theoretical platform to monitor the size of the defect on inner race which may be considered not only to identify but also to quantify the defect.

References

1.
Tandon
,
N.
, and
Choudhury
,
A.
,
1999
, “
A Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
,
32
(
8
), pp.
469
480
.
2.
Patil
,
M. S.
,
Mathew
,
J.
, and
Rajendrakumar
,
P. K.
,
2008
, “
Bearing Signature Analysis as a Medium for Fault Detection: A Review
,”
ASME J. Tribol.
,
130
(
1
), p.
014001
.
3.
Graney
,
B. P.
, and
Starry
,
K.
,
2012
, “
Rolling Element Bearing Analysis
,”
Mater. Eval.
,
70
(
1
), pp.
78
85
.
4.
Lynagh
,
N.
,
Rahnejat
,
H.
,
Ebrahimi
,
M.
, and
Aini
,
R.
,
2000
, “
Bearing Induced Vibration in Precision High Speed Routing Spindles
,”
Int. J. Mach. Tools Manuf.
,
40
(
4
), pp.
561
577
.
5.
Wardle
,
F. P.
,
1988
, “
Vibration Forces Produced by Waviness of the Rolling Surfaces of Thrust Loaded Ball Bearings—Part 1: Theory
,”
Proc. Inst. Mech. Eng., Part C
,
202
(
5
), pp.
305
312
.
6.
Rai
,
V. K.
, and
Mohanty
,
A. R.
,
2007
, “
Bearing Fault Diagnosis Using FFT of Intrinsic Mode Functions in Hilbert–Huang Transform
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2607
2615
.
7.
Vafaei
,
S.
,
Rahnejat
,
H.
, and
Aini
,
R.
,
2002
, “
Vibration Monitoring of High Speed Spindle Using Spectral Analysis Techniques
,”
Int. J. Mach. Tools Manuf.
,
42
(11), pp. 1223–1224.
8.
Sunnersjo
,
C. S.
,
1978
, “
Varying Compliance Vibrations of Rolling Bearings
,”
J. Sound Vib.
,
58
(
3
), pp.
363
373
.
9.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling Element Bearings, Part III: Ball Bearing Analysis
,”
ASME J. Tribol.
,
101
(
3
), pp.
313
318
.
10.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling Element Bearings, Part IV: Ball Bearing Results
,”
ASME J. Tribol.
,
101
(
3
), pp.
319
326
.
11.
Rahnejat
,
H.
, and
Gohar
,
R.
,
1985
, “
The Vibrations of Radial Ball Bearings
,”
Proc. Inst. Mech. Eng., Part C
,
199
(
3
), pp.
181
193
.
12.
Liew
,
A.
,
Feng
,
N.
, and
Hahn
,
E. J.
,
2002
, “
Transient Rotordynamic Modeling of Rolling Element Bearing Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
984
991
.
13.
Bhattacharyya
,
K.
, and
Dutt
,
J. K.
,
1997
, “
Unbalance Response and Stability Analysis of Horizontal Rotor Systems Mounted on Nonlinear Rolling Element Bearings With Viscoelastic Supports
,”
ASME J. Vib. Acoust.
,
119
(
4
), pp.
539
544
.
14.
Panda
,
K. C.
, and
Dutt
,
J. K.
,
1999
, “
Design of Optimum Support Parameters for Minimum Rotor Response and Maximum Stability Limit
,”
J. Sound Vib.
,
223
(
1
), pp.
1
21
.
15.
Panda
,
K. C.
, and
Dutt
,
J. K.
,
2003
, “
Optimum Support Characteristics for Rotor–Shaft System With Preloaded Rolling Element Bearings
,”
J. Sound Vib.
,
260
(
4
), pp.
731
755
.
16.
Kappaganthu
,
K.
, and
Nataraj
,
C.
,
2011
, “
Nonlinear Modeling and Analysis of a Rolling Element Bearing With a Clearance
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
10
), pp.
4134
4145
.
17.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2011
, “
Experimental and Analytical Investigation of High Speed Turbocharger Ball Bearings
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
122501
.
18.
Zhang
,
Y.-Y.
,
Wang
,
X.-L.
,
Zhang
,
X.-Q.
, and
Yan
,
X.-L.
,
2014
, “
Dynamic Analysis of a High-Speed Rotor-Ball Bearing System Under Elastohydrodynamic Lubrication
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061003
.
19.
Hoeprich
,
M. R.
,
1992
, “
Rolling Element Bearing Fatigue Damage Propagation
,”
ASME J. Tribol.
,
114
(2), pp.
328
333
.
20.
Branch
,
N. A.
,
Arakere
,
N. K.
,
Svendsen
,
V.
, and
Forster
,
N. H.
,
2010
, “
Stress Field Evolution in a Ball Bearing Raceway Fatigue Spall
,”
J. ASTM Int.
,
7
(
2
), pp.
1
18
.
21.
Boto
,
P. A.
,
1971
, “
Detection of Bearing Damage by Shock Pulse Measurement
,”
Ball Bearing J.
,
167
, pp.
1
7
.
22.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
.
23.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1985
, “
The Vibration Produced by a Multiple Point Defects in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
(
2
), pp.
263
273
.
24.
Brie
,
D.
,
2000
, “
Modelling of the Spalled Rolling Element Bearing Vibration Signal: An Overview and Some New Results
,”
Mech. Syst. Signal Process.
,
14
(
3
), pp.
353
369
.
25.
Tandon
,
N.
, and
Choudhury
,
A.
,
1997
, “
An Analytical Model for the Prediction of the Vibration Response of Rolling Element Bearings Due to Localized Defect
,”
J. Sound Vib.
,
205
(
3
), pp.
275
292
.
26.
Choudhury
,
A.
, and
Tandon
,
N.
,
2006
, “
Vibration Response of Rolling Element Bearings in a Rotor Bearing System to a Local Defect Under Radial Load
,”
ASME J. Tribol.
,
128
(
2
), pp.
252
261
.
27.
Cong
,
F.
,
Chen
,
J.
,
Dong
,
G.
, and
Pecht
,
M.
,
2013
, “
Vibration Model of Rolling Element Bearings in a Rotor-Bearing System for Fault Diagnosis
,”
J. Sound Vib.
,
332
(
8
), pp.
2081
2097
.
28.
Zhang
,
C.
,
Qiu
,
J.
,
Kurfess
,
T. R.
,
Danyluk
,
S.
, and
Liang
,
S. Y.
,
2000
, “
Impact Dynamics Modeling of Bearing Vibration for Defect Size Estimation
,”
Int. J. COMADEM
,
3
(
3
), pp.
37
42
.
29.
Kiral
,
Z.
, and
Karagulle
,
H.
,
2003
, “
Simulation and Analysis of Vibration Signals Generated by Rolling Element Bearing With Defects
,”
Tribol. Int.
,
36
(
9
), pp.
667
678
.
30.
Kiral
,
Z.
, and
Karagulle
,
H.
,
2006
, “
Vibration Analysis of Rolling Element Bearings With Various Defects Under the Action of an Unbalanced Force
,”
Mech. Syst. Signal Process.
,
20
(
8
), pp.
1967
1991
.
31.
Sassi
,
S.
,
Badri
,
B.
, and
Thomas
,
M.
,
2007
, “
A Numerical Model to Predict Damaged Bearing Vibrations
,”
J. Vib. Control
,
13
(
11
), pp.
1603
1628
.
32.
Liu
,
J.
,
Shao
,
Y.
, and
Lim
,
T. C.
,
2014
, “
Impulse Vibration Transmissibility Characteristics in the Presence of Localized Surface Defects in Deep Groove Ball Bearing Systems
,”
Proc. Inst. Mech. Eng., Part K
,
228
(
1
), pp.
62
81
.
33.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearing Including Localized and Distributed Defects—Part 1: Theory
,”
Proc. Inst. Mech. Eng., Part K
,
217
(
3
), pp.
201
211
.
34.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearing Including Localized and Distributed Defects—Part 2: Implementation and Results
,”
Proc. Inst. Mech. Eng., Part K
,
217
(
3
), pp.
213
233
.
35.
Cao
,
M.
, and
Xiao
,
J.
,
2008
, “
A Comprehensive Dynamic Model of Double-Row Spherical Roller Bearing-Modeling Development and Case Studies on Surface Defects, Preloads, and Radial Clearances
,”
Mech. Syst. Signal Process.
,
22
(2), pp.
467
489
.
36.
Rafsanjani
,
A.
,
Abbasion
,
S.
,
Farshidianfar
,
A.
, and
Moeenfard
,
H.
,
2009
, “
Nonlinear Dynamic Modeling of Surface Defects in Rolling Element Bearings
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1150
1174
.
37.
Patel
,
V. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.
38.
Yuan
,
X.
,
Zhu
,
Y.-S.
, and
Zhang
,
Y.-Y.
,
2014
, “
Multi-Body Vibration Modelling of Ball Bearing-Rotor System Considering Single and Compound Multi-Defects
,”
Proc. Inst. Mech. Eng., Part K
,
228
(
2
), pp.
199
212
.
39.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearings
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.
40.
Tadina
,
M.
, and
Boltezar
,
M.
,
2011
, “
Improved Model of a Ball Bearing for the Simulation of Vibration Signals Due to Faults During Run-Up
,”
J. Sound Vib.
,
330
(
17
), pp.
4287
4301
.
41.
Liu
,
J.
,
Shao
,
Y.
, and
Lim
,
T. C.
,
2012
, “
Vibration Analysis of Ball Bearings With a Localized Defect Applying Piecewise Response Function
,”
Mech. Mach. Theory
,
56
, pp.
156
169
.
42.
Marin
,
J.
,
Rubio
,
H.
,
Garcia-Prada
,
J. C.
, and
Reinoso
,
O.
,
2014
, “
Modeling and Simulation of 5 and 11 DOF Ball Bearing System With Localized Defect
,”
J. Test. Eval.
,
42
(
1
), pp.
34
49
.
43.
Antoni
,
J.
, and
Randall
,
R. B.
,
2003
, “
A Stochastic Model for Simulation and Diagnostics of Rolling Element Bearings With Localized Faults
,”
ASME J. Vib. Acoust.
,
125
(
3
), pp.
282
289
.
44.
Behzad
,
M.
,
Bastami
,
A. R.
, and
Mba
,
D.
,
2011
, “
A New Model for Estimating Vibrations Generated in the Defective Rolling Element Bearings
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041011
.
45.
Ashtekar
,
A.
,
Sadeghi
,
F.
, and
Stacke
,
L. E.
,
2008
, “
A New Approach to Modeling Surface Defects in Bearing Dynamics Simulations
,”
ASME J. Tribol.
,
130
(
4
), p.
041103
.
46.
Ashtekar
,
A.
,
Sadeghi
,
F.
, and
Stacke
,
L. E.
,
2010
, “
Surface Defects Effects on Bearing Dynamics
,”
Proc. Inst. Mech. Eng., Part J
,
224
(
1
), pp.
25
35
.
47.
Doguer
,
T.
,
Strackeljan
,
J.
, and
Tkachuk
,
P.
,
2009
, “
Using a Dynamic Roller Bearing Model Under Varying Fault Parameters
,”
6th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies
, pp.
907
918
.
48.
Liu
,
J.
,
Shao
,
Y.
, and
Zuo
,
M. J.
,
2013
, “
The Effects of the Shape of Localized Defect in Ball Bearings on the Vibration Waveform
,”
Proc. Inst. Mech. Eng., Part K
,
227
(
3
), pp.
261
274
.
49.
Epps
, I
. K.
,
1991
, “
An Investigation into Vibrations Excited by Discrete Faults in Rolling Element Bearings
,” Ph.D. thesis, University of Canterbury, Upper Riccarton, Christchurch.
50.
Sawalhi
,
N.
,
Randall
,
R. B.
, and
Endo
,
H.
,
2007
, “
The Enhancement of Fault Detection and Diagnosis in Rolling Element Bearings Using Minimum Entropy Deconvolution Combined With Spectral Kurtosis
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2616
2633
.
51.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2011
, “
Vibration Response of Spalled Rolling Element Bearings: Observations, Simulations, and Signal Processing Techniques to Track the Spall Size
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
846
870
.
52.
Nakhaeinejad
,
M.
, and
Bryant
,
M. D.
,
2011
, “
Dynamic Modeling of Rolling Element Bearings With Surface Contact Defects Using Bond Graphs
,”
ASME J. Tribol.
,
133
(
1
), p.
011102
.
53.
Singh
,
S.
,
Kopke
,
U. G.
,
Howard
,
C. Q.
,
Petersen
,
D.
, and
Rennison
,
D.
,
2013
, “
Impact Generating Mechanisms in Damaged Rolling Element Bearings
,”
Acoustics, Victor Harbor, Australia
, pp.
1
7
.
54.
Singh
,
S.
,
Kopke
,
U. G.
,
Howard
,
C. Q.
, and
Petersen
,
D.
,
2014
, “
Analyses of Contact Forces and Vibration Response for a Defective Rolling Element Bearing Using an Explicit Dynamics Finite Element Model
,”
J. Sound Vib.
,
333
(
21
), pp.
5356
5377
.
55.
Khanam
,
S.
,
Tandon
,
N.
, and
Dutt
,
J. K.
,
2014
, “
Force Analysis Due to Local Defect in Rolling Bearings for Fault Diagnosis
,” 9th
IFToMM
International Conference on Rotor Dynamics
, Milan, Italy, Sept. 22–25, Mechanisms and Machine Science, Vol. 21, Springer, pp.
577
586
.
56.
Shao
,
Y.
,
Liu
,
J.
, and
Ye
,
J.
,
2014
, “
A New Method to Model a Localized Surface Defect in a Cylindrical Roller-Bearing Dynamic Simulation
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
2
), pp.
140
159
.
57.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2014
, “
Dynamic Modeling and Vibration Response Simulation for High Speed Rolling Ball Bearings With Localized Surface Defects in Raceways
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041015
.
58.
Zhao
,
S.
,
Liang
,
L.
,
Xu
,
G.
,
Wang
,
J.
, and
Zhang
,
W.
,
2013
, “
Quantitative Diagnosis of a Spall-Like Fault of a Rolling Element Bearing by Empirical Mode Decomposition and the Approximate Entropy Method
,”
Mech. Syst. Signal Process.
,
40
(
1
), pp.
154
177
.
59.
Jena
,
D. P.
,
Singh
,
M.
, and
Kumar
,
R.
,
2012
, “
Radial Ball Bearing Inner Race Defect Width Measurement Using Analytical Wavelet Transform of Acoustic and Vibration Signal
,”
Meas. Sci. Rev.
,
12
(
4
), pp.
141
148
.
60.
Kumar
,
R.
, and
Singh
,
M.
,
2013
, “
Outer Race Defect Width Measurement in Taper Roller Bearing Using Discrete Wavelet Transform of Vibration Signal
,”
Measurement
,
46
(
1
), pp.
537
545
.
61.
Khanam
,
S.
,
Tandon
,
N.
, and
Dutt
,
J. K.
,
2014
, “
Fault Size Estimation in the Outer Race of Ball Bearing Using Discrete Wavelet Transform of the Vibration Signal
,”
Procedia Technol.
,
14
, pp.
12
19
.
62.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2013
, “
Antifriction Bearings Damage Analysis Using Experimental Data Based Models
,”
ASME J. Tribol.
,
135
(
4
), p.
041105
.
63.
Holm-Hansen
,
B. T.
, and
Gao
,
R. X.
,
2000
, “
Vibration Analysis of a Sensor-Integrated Ball Bearing
,”
ASME J. Vib. Acoust.
,
122
(
4
), pp.
384
392
.
64.
Slavic
,
J.
,
Brkovic
,
A.
, and
Boltezar
,
M.
,
2011
, “
Typical Bearing-Fault Rating Using Force Measurements: Application to Real Data
,”
J. Vib. Control
,
17
(
14
), pp.
2164
2174
.
65.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
66.
Dareing
,
D. W.
, and
Johnson
,
K. L.
,
1975
, “
Fluid Film Damping of Rolling Contact Vibrations
,”
J. Mech. Eng. Sci.
,
17
(
4
), pp.
214
218
.
67.
Mehdigoli
,
H.
,
Rahnejat
,
H.
, and
Gohar
,
R.
,
1990
, “
Vibration Response of Wavy Surfaced Disc in Elastohydrodynamic Rolling Contact
,”
Wear
,
139
(
1
), pp.
1
15
.
68.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2005
,
Engineering Tribology
, 3rd ed.,
Elsevier Butterworth-Heinemann
,
Oxford, UK
.
69.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
, 4th ed.,
Wiley
,
New York
.
70.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
71.
Krämer
,
E.
,
1993
,
Dynamics of Rotors and Foundations
,
Springer-Verlag
,
Berlin
.
72.
Genta
,
G.
,
2004
, “
On a Persistent Misunderstanding of the Role of Hysteretic Damping in Rotor Dynamics
,”
ASME J. Vib. Acoust.
,
126
(
3
), pp.
459
461
.
You do not currently have access to this content.