This work presents an exact and general model order reduction (MOR) technique for a fast finite element resolution of elastohydrodynamic lubrication (EHL) problems. The reduction technique is based on the static condensation principle. As such, it is exact and it preserves the generality of the solution scheme while reducing the size of its corresponding model and, consequently, the associated computational overhead. The technique is complemented with a splitting algorithm to alleviate the hurdle of solving an arising semidense matrix system. The proposed reduced model offers computational time speed-ups compared to the full model ranging between a factor of at least three and at best 15 depending on operating conditions. The results also reveal the robustness of the proposed methodology which allows the resolution of very highly loaded contacts with Hertzian pressures reaching several GPa. Such cases are known to be a numerical challenge in the EHL literature.

References

1.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1959
, “
A Numerical Solution of the Elastohydrodynamic Problem
,”
J. Mech. Eng. Sci.
,
1
(
1
), pp.
6
15
.
2.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts. Part I—Theoretical Formulation
,”
ASME J. Lubr. Technol.
,
98
(
2
), pp.
223
229
.
3.
Lubrecht
,
A. A.
,
Ten Napel
,
W. E.
, and
Bosma
,
R.
,
1986
, “
Multigrid, an Alternative Method for Calculating Film Thickness and Pressure Profiles in Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
108
(
4
), pp.
551
556
.
4.
Venner
,
C. H.
,
1991
, “
Multilevel Solution of the EHL Line and Point Contact Problems
,”
Ph.D. thesis
, University of Twente, Enschede, The Netherlands.
5.
Ju
,
Y.
, and
Farris
,
T. N.
,
1996
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
,
118
(
2
), pp.
320
328
.
6.
Rohde
,
S. M.
, and
Oh
,
K. P.
,
1975
, “
A Unified Treatment of Thick and Thin Film Elastohydrodynamic Problems by Using Higher Order Element Methods
,”
Proc. R. Soc. London, Part A
,
343
(
1634
), pp.
315
331
.
7.
Oh
,
K. P.
, and
Rohde
,
S. M.
,
1977
, “
Numerical Solution of the Point Contact Problem Using the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
11
(
10
), pp.
1507
1518
.
8.
Houpert
,
L. G.
, and
Hamrock
,
B. J.
,
1986
, “
Fast Approach for Calculating Film Thicknesses and Pressures in Elastohydrodynamically Lubricated Contacts at High Loads
,”
ASME J. Tribol.
,
108
(
3
), pp.
411
420
.
9.
Hsiao
,
H. S. S.
,
Hamrock
,
B. J.
, and
Tripp
,
J. H.
,
1998
, “
Finite Element System Approach to EHL of Elliptical Contacts: Part I—Isothermal Circular Non-Newtonian Formulation
,”
ASME J. Tribol.
,
120
(
4
), pp.
695
704
.
10.
Holmes
,
M. J. A.
,
Evans
,
H. P.
,
Hughes
,
T. G.
, and
Snidle
,
R. W.
,
2003
, “
Transient Elastohydrodynamic Point Contact Analysis Using a New Coupled Differential Deflection Method. Part I: Theory and Validation
,”
Proc. Inst. Mech. Eng., Part J
,
217
(
4
), pp.
289
303
.
11.
Evans
,
H. P.
, and
Hughes
,
T. G.
,
2000
, “
Evaluation of Deflection in Semi-Infinite Bodies by a Differential Method
,”
Proc. Inst. Mech. Eng., Part C
,
214
(
4
), pp.
563
584
.
12.
Bruyere
,
V.
,
Fillot
,
N.
,
Morales-Espejel
,
G. E.
, and
Vergne
,
P.
,
2012
, “
Computational Fluid Dynamics and Full Elasticity Model for Sliding Line Thermal Elastohydrodynamic Contacts
,”
Tribol. Int.
,
46
(
1
), pp.
3
13
.
13.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), p.
021501
.
14.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2012
, “
Stabilized Fully-Coupled Finite Elements for Elastohydrodynamic Lubrication Problems
,”
Adv. Eng. Software
,
46
(
1
), pp.
4
18
.
15.
Wu
,
S. R.
,
1986
, “
A Penalty Formulation and Numerical Approximation of the Reynolds–Hertz Problem of Elastohydrodynamic Lubrication
,”
Int. J. Eng. Sci.
,
24
(
6
), pp.
1001
1013
.
16.
Habchi
,
W.
, and
Issa
,
J.
,
2013
, “
Fast and Reduced Full-System Finite Element Solution of Elastohydrodynamic Lubrication Problems: Line Contacts
,”
Adv. Eng. Software
,
56
, pp.
51
62
.
17.
Habchi
,
W.
,
2014
, “
Reduced Order Finite Element Model for Elastohydrodynamic Lubrication: Circular Contacts
,”
Tribol. Int.
,
71
, pp.
98
108
.
18.
Maier
,
D.
,
Hager
,
C.
,
Hetzler
,
H.
,
Fillot
,
N.
,
Vergne
,
P.
,
Dureisseix
,
D.
, and
Seemann
,
W.
,
2015
, “
A Nonlinear Model Order Reduction Approach to the Elastohydrodynamic Problem
,”
Tribol. Int.
,
82
, pp.
484
492
.
19.
Maier
,
D.
,
Hager
,
C.
,
Hetzler
,
H.
,
Fillot
,
N.
,
Vergne
,
P.
,
Dureisseix
,
D.
, and
Seemann
,
W.
,
2015
, “
Fast Solution of Transient Elastohydrodynamic Line Contact Problems Using the Trajectory Piecewise Linear Approach
,”
ASME J. Tribol.
,
138
(1), p.
011502
.
20.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), p.
380
.
21.
Varga
,
R. S.
,
1960
, “
Factorization and Normalized Iterative Methods
,”
Boundary Problems in Differential Equations
,
R. E.
Langer
, ed.,
University of Wisconsin Press
,
Madison, WI
, pp.
121
142
.
22.
Reynolds
,
O.
,
1886
, “
On the Theory of the Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc.
,
177
(
0
), pp.
157
234
.
23.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline-Upwind/Petrov–Galerkin Formulations for Convective Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(1–3), pp.
199
259
.
24.
Galeão
,
A. C.
,
Almeida
,
R. C.
,
Malta
,
S. M. C.
, and
Loula
,
A. F. D.
,
2004
, “
Finite Element Analysis of Convection Dominated Reaction-Diffusion Problems
,”
Appl. Numer. Math.
,
48
(
2
), pp.
205
222
.
25.
Deuflhard
,
P.
,
2004
,
Newton Methods for Nonlinear Problems, Affine Invariance and Adaptive Algorithms
,
Springer
,
Berlin
.
26.
Irons
,
B. M.
,
1965
, “
Structural Eigenvalue Problems, Elimination of Unwanted Variables
,”
AIAA J.
,
3
(
5
), pp.
961
962
.
27.
Hamming
,
R. W.
,
1986
,
Numerical Methods for Scientists and Engineers
,
Dover Publications
,
New York
.
28.
Davis
,
T. A.
, and
Duff
,
I. S.
,
1997
, “
An Unsymmetric-Pattern Multifrontal Method for Sparse LU Factorization
,”
SIAM J. Matrix Anal. Appl.
,
18
(
1
), pp.
140
158
.
29.
Dowson
,
D.
, and
Wang
,
D.
,
1994
, “
An Analysis of the Normal Bouncing of a Solid Elastic Ball on an Oily Plate
,”
Wear
,
179
(1–2), pp.
29
37
.
30.
Roelands
,
C. J. A.
,
1966
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,” Ph.D. thesis, Technische
Hogeschool Delft, Delft
,
The Netherlands
.
31.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication. The Fundamental of Roller and Gear Lubrication
,
Pergamon
,
Oxford, UK
.
32.
Moes
,
H.
,
1992
, “
Optimum Similarity Analysis With Applications to Elastohydrodynamic Lubrication
,”
Wear
,
159
(
1
), pp.
57
66
.
You do not currently have access to this content.