The current design of materials against wear considers hardness as the sole material property. As a result, the brittleness associated with increased hardness leads to severe damage. The purpose of this research is to understand the nature of conflicts between hardness and toughness of a new alloy composite. First, we designed Al-Cu-Fe alloys containing crystal structures of λ, β, and quasi-crystalline i-phase. These and their combination with others lead to a set of alloys with various hardness and fracture toughness. Experimental study was carried out using a noble and hard tungsten carbide (WC) ball against sample disks. The WC ball did not produce any wear. The wear rate of those alloys was found to be dependent not only on their hardness, but also the toughness, an alternative to the well-accepted Archard-based equations.

References

1.
Hase
,
T.
,
Ohtagaki
,
T.
,
Yamaguchi
,
M.
,
Ikeo
,
N.
, and
Mukai
,
T.
,
2016
, “
Effect of Aluminum or Zinc Solute Addition on Enhancing Impact Fracture Toughness in Mg–Ca Alloys
,”
Acta Mater.
,
104
, pp.
283
294
.
2.
Liu
,
Y.
,
Wang
,
Y.-M.
, and
Liu
,
L.
,
2015
, “
Fatigue Crack Propagation Behavior and Fracture Toughness in a Ni-Free ZrCuFeAlAg Bulk Metallic Glass
,”
Acta Mater.
,
92
, pp.
209
219
.
3.
Mikula
,
M.
,
Plašienka
,
D.
,
Sangiovanni
,
D. G.
,
Sahul
,
M.
,
Roch
,
T.
,
Truchlý
,
M.
,
Gregor
,
M.
,
Čaplovič
,
L. U.
,
Plecenik
,
A.
, and
Kúš
,
P.
,
2016
, “
Toughness Enhancement in Highly NbN-Alloyed Ti-Al-N Hard Coatings
,”
Acta Mater.
,
121
, pp.
59
67
.
4.
Studart
,
A. R.
,
2012
, “
Towards High‐Performance Bioinspired Composites
,”
Adv. Mater.
,
24
(
37
), pp.
5024
5044
.
5.
Villaggio
,
P.
,
2001
, “
Wear of an Elastic Block
,”
Meccanica
,
36
(
3
), pp.
243
250
.
6.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1939
, “
The Area of Contact Between Stationary and Between Moving Surfaces
,”
Proc. R. Soc. London. Ser. A
,
169
(
938
), pp.
391
413
.
7.
Holm
,
R.
, and
Heijne
,
A. V.
,
1946
,
Electric Contacts
,
H. Geber
,
Stockholm, Sweden
.
8.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
9.
Kassman
,
Å.
,
Jacobson
,
S.
,
Erickson
,
L.
,
Hedenqvist
,
P.
, and
Olsson
,
M.
,
1991
, “
A New Test Method for the Intrinsic Abrasion Resistance of Thin Coatings
,”
Surf. Coat. Technol.
,
50
(
1
), pp.
75
84
.
10.
Rai
,
V. K.
,
Srivastava
,
R.
,
Nath
,
S. K.
, and
Ray
,
S.
,
1999
, “
Wear in Cast Titanium Carbide Reinforced Ferrous Composites Under Dry Sliding
,”
Wear
,
231
(
2
), pp.
265
271
.
11.
Fouvry
,
S.
, and
Kapsa
,
P.
,
2001
, “
An Energy Description of Hard Coating Wear Mechanisms
,”
Surf. Coat. Technol.
,
138
(
2–3
), pp.
141
148
.
12.
Liu
,
R.
, and
Li
,
D. Y.
,
2001
, “
Modification of Archard's Equation by Taking Account of Elastic/Pseudoelastic Properties of Materials
,”
Wear
,
251
(
1–12
), pp.
956
964
.
13.
Yang
,
L. J.
,
2003
, “
Wear Coefficient Equation for Aluminium-Based Matrix Composites Against Steel Disc
,”
Wear
,
255
(
1–6
), pp.
579
592
.
14.
Fillot
,
N.
,
Iordanoff
,
I.
, and
Berthier
,
Y.
,
2007
, “
Wear Modeling and the Third Body Concept
,”
Wear
,
262
(
7–8
), pp.
949
957
.
15.
Savio
,
G.
,
Meneghello
,
R.
, and
Concheri
,
G.
,
2009
, “
A Surface Roughness Predictive Model in Deterministic Polishing of Ground Glass Moulds
,”
Int. J. Mach. Tools Manuf.
,
49
(
1
), pp.
1
7
.
16.
Mishina
,
H.
, and
Hase
,
A.
,
2013
, “
Wear Equation for Adhesive Wear Established Through Elementary Process of Wear
,”
Wear
,
308
(
1–2
), pp.
186
192
.
17.
Hu
,
J.
,
Li
,
D.
, and
Llewellyn
,
R.
,
2007
, “
Synergistic Effects of Microstructure and Abrasion Condition on Abrasive Wear of Composites—A Modeling Study
,”
Wear
,
263
(
1–6
), pp.
218
227
.
18.
Jiang
,
J.
,
Sheng
,
F.
, and
Ren
,
F.
,
1998
, “
Modelling of Two-Body Abrasive Wear Under Multiple Contact Conditions
,”
Wear
,
217
(
1
), pp.
35
45
.
19.
Tung
,
S. C.
, and
Huang
,
Y.
,
2004
, “
Modeling of Abrasive Wear in a Piston Ring and Engine Cylinder Bore System
,”
Tribol. Trans.
,
47
(
1
), pp.
17
22
.
20.
Axen
,
N.
, and
Jacobson
,
S.
,
1994
, “
A Model for the Abrasive Wear Resistance of Multiphase Materials
,”
Wear
,
174
(
1–2
), pp.
187
199
.
21.
Ozaydin
,
M. F.
, and
Liang
,
H.
,
2016
, “
Design and Synthesis of a Geopolymer-Enhanced Quasi-Crystalline Composite for Resisting Wear and Corrosion
,”
ASME J. Tribol.
,
138
(
2
), p.
021601
.
22.
Mohseni
,
H.
,
Nandwana
,
P.
,
Tsoi
,
A.
,
Banerjee
,
R.
, and
Scharf
,
T.
,
2015
, “
In Situ Nitrided Titanium Alloys: Microstructural Evolution During Solidification and Wear
,”
Acta Mater.
,
83
, pp.
61
74
.
23.
Barceinas-Sanchez
,
J. D. O.
, and
Rainforth
,
W.
,
1998
, “
On the Role of Plastic Deformation During the Mild Wear of Alumina
,”
Acta Mater.
,
46
(
18
), pp.
6475
6483
.
24.
Ortiz-Merino
,
J. L.
, and
Todd
,
R. I.
,
2005
, “
Relationship Between Wear Rate, Surface Pullout and Microstructure During Abrasive Wear of Alumina and Alumina/SiC Nanocomposites
,”
Acta Mater.
,
53
(
12
), pp.
3345
3357
.
25.
Xiao
,
H.
,
Shin
,
Y.
,
Li
,
P.
,
Sue
,
H.-J.
, and
Liang
,
H.
,
2014
, “
A New Composite Designed to Resist Wear
,”
Mater. Des.
,
63
, pp.
749
756
.
26.
Yin
,
X.
, and
Komvopoulos
,
K.
,
2010
, “
An Adhesive Wear Model of Fractal Surfaces in Normal Contact
,”
Int. J. Solids Struct.
,
47
(
7–8
), pp.
912
921
.
27.
Taskin
,
M.
,
Caligulu
,
U.
, and
Gur
,
A. K.
,
2008
, “
Modeling Adhesive Wear Resistance of Al-Si-Mg-/SiCp PM Compacts Fabricated by Hot Pressing Process, by Means of ANN
,”
Int. J. Adv. Manuf. Technol.
,
37
(
7–8
), pp.
715
721
.
28.
Grujicic
,
M.
,
Sellappan
,
V.
,
Omar
,
M.
,
Seyr
,
N.
,
Obieglo
,
A.
,
Erdmann
,
M.
, and
Holzleitner
,
J.
,
2008
, “
An Overview of the Polymer-to-Metal Direct-Adhesion Hybrid Technologies for Load-Bearing Automotive Components
,”
J. Mater. Process. Technol.
,
197
(
1–3
), pp.
363
373
.
29.
Deli
,
G.
,
Qunji
,
X.
, and
Hongli
,
W.
,
1991
, “
Physical Models of Adhesive Wear of Polytetrafluoroethylene and Its Composites
,”
Wear
,
147
(
1
), pp.
9
24
.
30.
Fillot
,
N.
,
Iordanoff
,
I.
, and
Berthier
,
Y.
,
2007
, “
Modelling Third Body Flows With a Discrete Element Method—A Tool for Understanding Wear With Adhesive Particles
,”
Tribol. Int.
,
40
(
6
), pp.
973
981
.
31.
Ding
,
J.
,
2009
, “
A Multi-Scale Model for Fretting Wear With Oxidation-Debris Effects
,”
Proc. Inst. Mech. Eng.
,
223
(
7
), pp.
1019
1031
.
32.
McColl
,
I. R.
,
Ding
,
J.
, and
Leen
,
S. B.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
(
11–12
), pp.
1114
1127
.
33.
Fouvry
,
S.
,
Wendler
,
B.
,
Liskiewicz
,
T.
,
Dudek
,
M.
, and
Kolodziejczyk
,
L.
,
2004
, “
Fretting Wear Analysis of TiC/VC Multilayered Hard Coatings: Experiments and Modelling Approaches
,”
Wear
,
257
(
7–8
), pp.
641
653
.
34.
Geringer
,
J.
, and
Macdonald
,
D. D.
,
2012
, “
Modeling Fretting-Corrosion Wear of 316 L SS Against Poly(Methyl Methacrylate) With the Point Defect Model: Fundamental Theory, Assessment, and Outlook
,”
Electrochim. Acta
,
79
, pp.
17
30
.
35.
ElTobgy
,
M.
,
Ng
,
E.
, and
Elbestawi
,
M.
,
2005
, “
Finite Element Modeling of Erosive Wear
,”
Int. J. Mach. Tools Manuf.
,
45
(
11
), pp.
1337
1346
.
36.
Hebbar
,
A.
,
Ouinas
,
D.
,
Lousdad
,
A.
, and
Bachir Bouiadjra
,
B.
,
2010
, “
Erosive Wear Modeling of Polymeric Composite Materials
,”
J. Reinf. Plast. Compos.
,
29
(
12
), pp.
1893
1899
.
37.
Bingley
,
M.
, and
O'Flynn
,
D.
,
2005
, “
Examination and Comparison of Various Erosive Wear Models
,”
Wear
,
258
(
1–4
), pp.
511
525
.
38.
Yaghtin
,
A. H.
,
Salahinejad
,
E.
,
Khosravifard
,
A.
,
Araghi
,
A.
, and
Akhbarizadeh
,
A.
,
2015
, “
Corrosive Wear Behavior of Chromium Carbide Coatings Deposited by Air Plasma Spraying
,”
Ceram. Int.
,
41
(
6
), pp.
7916
7920
.
39.
Li
,
Q.
,
Lu
,
H.
,
Cui
,
J.
,
An
,
M.
, and
Li
,
D.
,
2016
, “
Electrodeposition of Nanocrystalline Zinc on Steel for Enhanced Resistance to Corrosive Wear
,”
Surf. Coat. Technol.
,
304
, pp.
567
573
.
40.
Giourntas
,
L.
,
Hodgkiess
,
T.
, and
Galloway
,
A. M.
,
2015
, “
Enhanced Approach of Assessing the Corrosive Wear of Engineering Materials Under Impingement
,”
Wear
,
338–339
, pp.
155
163
.
41.
Itoga
,
M.
,
Aoki
,
S.
,
Suzuki
,
A.
,
Yoshida
,
Y.
,
Fujinami
,
Y.
, and
Masuko
,
M.
,
2016
, “
Toward Resolving Anxiety About the Accelerated Corrosive Wear of Steel Lubricated With the Fluorine-Containing Ionic Liquids at Elevated Temperature
,”
Tribol. Int.
,
93
(
Pt. B
), pp.
640
650
.
42.
Duan
,
D.
,
Hu
,
Z.
,
Jiang
,
S.
,
Hou
,
S.
, and
Li
,
S.
,
2014
, “
Corrosive Wear Behaviors of Carbon Steels in Oil-Water Fluid
,”
Tribol. Trans.
,
57
(
2
), pp.
317
323
.
43.
Svanidze
,
E.
,
Besara
,
T.
,
Ozaydin
,
M. F.
,
Tiwary
,
C. S.
,
Wang
,
J. K.
,
Radhakrishnan
,
S.
,
Mani
,
S.
,
Xin
,
Y.
,
Han
,
K.
,
Liang
,
H.
,
Siegrist
,
T.
,
Ajayan
,
P. M.
, and
Morosan
,
E.
,
2016
, “
High Hardness in the Biocompatible Intermetallic Compound β-Ti3Au
,”
Sci. Adv.
,
2
(
7
), p.
e1600319
.
44.
Huitink
,
D.
,
Liang
,
H.
,
Peng
,
L.
, and
Ribeiro
,
R.
,
2009
, “
In Situ Observation of Stress-Induced Au-Si Phase Transformation
,”
Appl. Phys. Lett.
,
94
(
18
), p.
183111
.
45.
Ribeiro
,
R.
,
Liang
,
H.
,
Shan
,
Z.
, and
Minor
,
A. M.
,
2007
, “
In Situ Observation of Nano-Abrasive Wear
,”
Wear
,
263
(
7–12
), pp.
1556
1559
.
46.
Lee
,
K.
,
Hsu
,
J.
,
Naugle
,
D.
, and
Liang
,
H.
,
2016
, “
Multi-Phase Quasicrystalline Alloys for Superior Wear Resistance
,”
Mater. Des.
,
108
, pp.
440
447
.
47.
Chen
,
H.-L.
,
Du
,
Y.
,
Xu
,
H.
, and
Xiong
,
W.
,
2009
, “
Experimental Investigation and Thermodynamic Modeling of the Ternary Al–Cu–Fe System
,”
J. Mater. Res.
,
24
(
10
), pp.
3154
3164
.
48.
Göğebakan
,
M.
,
Avar
,
B.
, and
Uzun
,
O.
,
2009
, “
Quasicrystalline Phase Formation in the Conventionally Solidified Al–Cu–Fe System
,”
Mater. Sci.-Poland
,
27
(
3
), pp.
919
926
.http://www.materialsscience.pwr.wroc.pl/bi/vol27no3/articles/ms_32goge_2008_501.pdf
49.
Raghavan
,
V.
,
2005
, “
Al-Cu-Fe (Aluminum-Copper-Iron)
,”
J. Phase Equilib. Diffus.
,
26
(
1
), pp.
59
64
.
50.
Raghavan
,
V.
,
2007
, “
Al-Cu-Fe-Si (Aluminum-Copper-Iron-Silicon)
,”
J. Phase Equilib. Diffus.
,
28
(
2
), pp.
209
210
.
51.
Turquier
,
F.
,
Cojocaru
,
V.
,
Stir
,
M.
,
Nicula
,
R.
,
Lathe
,
C.
, and
Burkel
,
E.
,
2004
, “
Formation and Stability of Single-Phase Al-Cu-Fe Quasicrystals Under Pressure
,”
Rev. Adv. Mater. Sci.
,
8
(
2
), pp.
147
151
.http://www.ipme.ru/e-journals/RAMS/no_2804/turquier.pdf
You do not currently have access to this content.