Abstract

Additive manufacturing (AM) processes create material directly into a functional shape. Often the material properties vary with part geometry, orientation, and build layout. Today, trial-and-error methods are used to generate material property data under controlled conditions that may not map to the entire range of geometries over a part. Described here is the development of a modeling tool enabling prediction of the performance of parts built with AM, with rigorous consideration of the microstructural properties governing the nucleation and propagation of fatigue cracks. This tool, called DigitalClone® for additive manufacturing (DCAM), is an Integrated Computational Materials Engineering (ICME) tool that includes models of crack initiation and damage progression with the high-fidelity process and microstructure modeling approaches. The predictive model has three main modules: process modeling, microstructure modeling, and fatigue modeling. In this paper, a detailed description and theoretical basis of each module is provided. Experimental validations (microstructure, porosity, and fatigue) of the tool using multiple material characterization and experimental coupon testing for five different AM materials are discussed. The physics-based computational modeling encompassed within DCAM provides an efficient capability to fully explore the design space across geometries and materials, leading to components that represent the optimal combination of performance, reliability, and durability.

References

1.
2015, ISO/ASTM52900-15: Standard Terminology for Additive Manufacturing—General Principles—Terminology, ASTM International, West Conshohocken, PA
.
2.
Wohlers Associates
,
2020
, “
Wohlers Reports: 3D Printing and Additive Manufacturing
.”
3.
Kover
,
A.
, “
Transformation in 3D: How a Walnut-Sized Part Changed the Way GE Aviation Builds Jet Engine
,” last modified November 19, 2018, https://www.ge.com/news/reports/transformation-3d-walnut-sized-part-changed-way-ge-aviation-builds-jet-engines, Accessed July 1, 2020.
4.
Collins
,
P. C.
,
Brice
,
D. A.
,
Samimi
,
P.
,
Ghamarian
,
I.
, and
Fraser
,
H. L.
,
2016
, “
Microstructural Control of Additively Manufactured Metallic Materials
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
63
91
.
5.
Quadrennial Technology Review
,” U.S. Department of Energy, 2015, https://www.energy.gov/sites/prod/files/2017/03/f34/quadrennial-technology-review-2015_1.pdf
6.
Živić
,
F.
,
Grujović
,
N.
,
Mitrović
,
S.
,
Adamović
,
A.
,
Petrović
,
V.
,
Radovanović
,
A.
,
Đurić
,
S.
, and
Palić
,
N.
,
2016
, “
Friction and Adhesion in Porous Biomaterial Structure
,”
Tribol. Ind.
,
38
(
3
), pp.
361
370
.
7.
Additive Manufacture of Roller Bearing Components
,”
last modified November 27
,
2017
, https://industryeurope.com/additive-manufacture-of-roller-bearing-components/
8.
The Added Value of 3D Printing
,”
SKF, last modified November 12
,
2020
, https://evolution.skf.com/us/the-added-value-of-3d-printing/
9.
Kluge
,
M.
,
Kotthoff
,
G.
,
Cavallini
,
C.
, and
Höges
,
S.
,
2017
, “
Design
and
Production of Innovative Transmission Components with Additive Manufacturing
,”
16th International CTI Symposium Automotive Transmissions, HEV and EV Drives
,
Berlin, Germany
,
Dec. 5–7
.
10.
Application Spotlight: 3D Printing for Bearings
,”
last modified July 25
,
2019
, https://amfg.ai/2019/07/25/application-spotlight-3d-printing-for-bearings/?cn-reloaded=1
11.
BearingNews
, “
Additive Manufacturing of Rolling Bearings in Innovative Lightweight Design by Laser Metal Deposition
,”
last modified January 23
,
2019
, https://www.bearing-news.com/additive-manufacturing-of-rolling-bearings-in-innovative-lightweight-design-by-laser-metal-deposition/
12.
Keller
,
N.
, and
Ploshikhin
,
V.
,
2014
, “
New Method for Fast Predictions of Residual Stress and Distortion of AM Parts
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug
.
13.
Keller
,
N.
,
Neugebauer
,
F.
,
Xu
,
H.
, and
Ploshikhin
,
V.
,
2013
, “
Thermo-Mechanical Simulation of Additive Layer Manufacturing of Titanium Aerospace Structures
,”
Proceedings of LightMAT 2013 The International Conference on Light Materials
,
Bremen, Germany
,
Sept. 3–5
.
14.
Denlinger
,
E.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanial Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
15.
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Reutzel
,
E.
,
2015
, “
Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V
,”
Addit. Manuf.
,
5
, pp.
9
19
.
16.
Zaeh
,
M.
, and
Branner
,
G.
,
2010
, “
Investigation on Residual Stress and Deformations in Selective Laser Melting
,”
Prod. Eng.
,
4
(
1
), pp.
35
45
.
17.
Patil
,
N.
,
Pal
,
D.
, and
Stucker
,
B.
,
2013
, “
A New Finite Element Solver Using Numerical Eigen Modes for Fast Simulation of Additive Manufacturing Processes
,”
Proceeding of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug.
, pp.
535
548
.
18.
Hodge
,
N.
,
Ferencz
,
R.
, and
Vignes
,
R.
,
2016
, “
Experimental Comparison of Residual Stresses for a Thermomechanical Model for the Simulation of Selective Laser Melting
,”
Addit. Manuf.
,
12
, pp.
159
168
.
19.
Peng
,
H.
,
Go
,
D.
,
Billo
,
R.
,
Gong
,
S.
,
Shankar
,
M.
,
Gatrell
,
B.
,
Budzinski
,
J.
,
Ostiguy
,
P.
,
Attardo
,
R.
, and
Tomonto
,
C.
,
2016
, “
Part-Scale Model for Fast Prediction of Thermal Distortion in DMLS Additive Manufacturing; Part 1: A Thermal Circuit Network Model
,”
Proceeding of 27th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
365
381
.
20.
Peng
,
H.
,
Go
,
D.
,
Billo
,
R.
,
Gong
,
S.
,
Shankar
,
M.
,
Gatrell
,
B.
,
Budzinski
,
J.
,
Ostiguy
,
P.
,
Attardo
,
R.
, and
Tomonto
,
C.
,
2016
, “
Part-Scale Model for Fast Prediction of Thermal Distortion in DMLS Additive Manufacturing; Part 2: A Quasi-Static Thermomechanical Model
,”
Proceeding of 27th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
382
397
.
21.
Li
,
C.
,
Liu
,
J.
, and
Guo
,
Y.
,
2016
, “
Prediction of Residual Stress and Part Distortion in Selective Laser Melting
,”
Procedia CIRP
,
45
, pp.
171
174
.
22.
Rappaz
,
M.
, and
Gandin
,
C.
,
1993
, “
Probabilistic Modelling of Microstructure Formation in Solidification Processes
,”
Acta Metall. Mater.
,
41
(
2
), pp.
345
360
.
23.
Tan
,
W.
, and
Shin
,
Y. C.
,
2015
, “
Multi-Scale Modeling of Solidification and Microstructure Development in Laser Keyhole Welding Process for Austenitic Stainless Steel
,”
Comput. Mater. Sci.
,
98
(
C
), pp.
446
458
.
24.
Tan
,
W.
,
Bailey
,
N. S.
, and
Shin
,
Y. C.
,
2011
, “
A Novel Integrated Model Combining Cellular Automata and Phase Field Methods for Microstructure Evolution During Solidification of Multi-Component and Multi-Phase Alloys
,”
Comput. Mater. Sci.
,
50
(
9
), pp.
2573
2585
.
25.
Tan
,
W.
,
Bailey
,
N. S.
, and
Shin
,
Y. C.
,
2012
, “
Numerical Modeling of Transport Phenomena and Dendritic Growth in Laser Spot Conduction Welding of 304 Stainless Steel
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041010
.
26.
Zhang
,
J.
,
Liou
,
F.
,
Seufzer
,
W.
, and
Taminger
,
K.
,
2016
, “
A Coupled Finite Element Cellular Automation Model to Predict Thermal History and Grain Morphology of Ti-6Al-4V During Direct Metal Deposition (DMD)
,”
Addit. Manuf.
,
11
, pp.
32
39
.
27.
Zhang
,
J.
,
Liou
,
F.
,
Seufzer
,
W.
,
Newkirk
,
J.
,
Fan
,
Z.
,
Liu
,
H.
, and
Sparks
,
T. E.
,
2013
, “
Probabilistic Simulation of Solidification Microstructure Evolution During Laser-Based Metal Deposition
,”
Proceedings of 24th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug.
, pp.
739
748
.
28.
Yin
,
H.
, and
Felicelli
,
S.
,
2010
, “
Dendrite Growth Simulation During Solidification in the LENS Process
,”
Acta Mater.
,
58
(
4
), pp.
1455
1465
.
29.
Thévoz
,
P.
,
Desbiolles
,
J.
, and
Rappaz
,
M.
,
1989
, “
Modeling of Equiaxed Microstructure Formation in Casting
,”
Metall. Trans. A
,
20
(
2
), pp.
311
322
.
30.
Kurz
,
W.
,
Giovanola
,
B.
, and
Trivedi
,
R.
,
1986
, “
Theory of Microstructural Development During Rapid Solidification
,”
Acta Metall.
,
34
(
5
), pp.
823
830
.
31.
Natsume
,
Y.
, and
Ohsasa
,
K.
,
2006
, “
Prediction of Casting Structure in Aluminum-Base Multi-Component Alloys Using Heterogeneous Nucleation Parameter
,”
ISIJ Int.
,
46
(
6
), pp.
896
902
.
32.
Bolander
,
N.
,
Pulikollu
,
R. V.
, and
Jalalahmadi
,
B.
,
2019
, “
Method and System for Predicting Surface Contact Fatigue Life
,”
U.S. Patent No. 10,474,772, November 12
,
2019
.
33.
Tanaka
,
K.
, and
Mura
,
T.
,
1981
, “
A Dislocation Model for Fatigue Crack Initiation
,”
ASME J. Appl. Mech.
,
48
(
1
), pp.
97
103
.
34.
Carneiro
,
L.
,
Jalalahmadi
,
B.
,
Ashtekar
,
A.
, and
Jiang
,
Y.
,
2019
, “
Cyclic Deformation and Fatigue Behavior of Additively Manufactured 17-4 PH Stainless Steel
,”
Int. J. Fatigue
,
123
, pp.
22
30
.
35.
Additive Manufacturing Benchmark Test Series (AM-Bench)
,” NIST, https://www.nist.gov/ambench/benchmark-test-data,
Accessed August 28
,
2018
.
36.
Doran
,
M.E.
, “
Is Anyone Printing Gears using Metal Additive Manufacturing?
,”
last modified: July 15
,
2019
, https://gearsolutions.com/features/is-anyone-printing-gears-using-metal-additive-manufacturing/
37.
Walvekar
,
A.
,
Leonard
,
B.
,
Sadeghi
,
F.
,
Jalalahmadi
,
B.
, and
Bolander
,
N.
,
2014
, “
An Experimental Study and Fatigue Damage Model for Fretting Fatigue
,”
Tribol. Int.
,
79
, pp.
183
196
.
You do not currently have access to this content.