Abstract

Galling is a recurring phenomenon in deep drawing processes which requires frequent maintenance of tools to improve the product surface quality. Adhesive transfer of softer material on the hard tool surface results in sharp features which causes surface roughening of the tools and deterioration of deep drawn products. In this article, an adhesive wear model based on a deterministic approach is developed to predict the galling behavior in a deep drawing process. The model uses the surface topography, material properties and contact conditions to predict the surface roughening of tool surfaces under perfectly plastic conditions. The adhesive transfer of material is considered by the growth of the asperities based on its geometry for the increase in height and radial direction by preserving the original shape and volume consistency. The results of the multi-asperity models show the growth of the transfer layer and its effects due to load, sliding cycle, sliding distance, and affinity of the materials. The results show the influence of the above-said parameters and its applicability for deep drawing process conditions. The simulated results show an 85% level of confidence in comparison with the experiments from literature for the prediction of the surface evolution due to the galling mechanism.

References

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London Ser. A. Math. Phys. Sci.
,
295
(
1442
), pp.
300
319
.
2.
Christensen
,
H.
,
1969
, “
Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
1013
1026
.
3.
Johnson
,
K.
,
Greenwood
,
J.
, and
Poon
,
S.
,
1972
, “
A Simple Theory of Asperity Contact in Elastohydro-Dynamic Lubrication
,”
Wear
,
19
(
1
), pp.
91
108
.
4.
Chang
,
W.-R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME. J. Tribol.
,
110
(
1
), pp.
57
63
.
5.
Halling
,
J.
,
Arnell
,
R.
, and
Nuri
,
K.
,
1988
, “
The Elastic—Plastic Contact of Rough Surfaces and its Relevance in the Study of Wear
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
202
(
4
), pp.
269
274
.
6.
Halling
,
J.
, and
Nuri
,
K.
,
1991
, “
Elastic/Plastic Contact of Surfaces Considering Ellipsoidal Asperities of Work-Hardening Multi-Phase Materials
,”
Tribol. Int.
,
24
(
5
), pp.
311
319
.
7.
Greenwood
,
J.
,
1984
, “
A Unified Theory of Surface Roughness
,”
Proc. R. Soc. London A. Math. Phys. Sci.
,
393
(
1804
), pp.
133
157
.
8.
Moalic
,
H.
,
Fitzpatrick
,
J.A.
, and
Torrance
,
A.A.
,
1989
, “
A Spectral Approach to the Analysis of Rough Surfaces
,”
ASME. J. Tribol.
,
111
(
2
), pp.
359
363
.
9.
Chang
,
W.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME. J. Tribol.
,
109
(
2
), pp.
257
263
.
10.
Pullen
,
J.
, and
Williamson
,
J.
,
1972
, “
On the Plastic Contact of Rough Surfaces
,”
Proc. R. Soc. London A. Math. Phys. Sci.
,
327
(
1569
), pp.
159
173
.
11.
Abbott
,
E. J.
, and
Firestone
,
F. A.
,
1933
, “
Specifying Surface Quality: A Method Based on Accurate Measurement and Comparison
,”
J. Mech. Eng.
,
55
, pp.
569
572
.
12.
Nayak
,
P.
,
1973
, “
Random Process Model of Rough Surfaces in Plastic Contact
,”
Wear
,
26
(
3
), pp.
305
333
.
13.
Lin and
,
L. P.
, and
Lin
,
J. F.
,
2005
, “
An Elastoplastic Microasperity Contact Model for Metallic Materials
,”
ASME J. Tribol.
,
127
(
3
), pp.
666
672
.
14.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
15.
de Rooij
,
M. B.
, and
Schipper
,
D. J.
,
2000
, “
Analysis of Material Transfer From a Soft Workpiece to a Hard Tool: Part I—Lump Growth Model
,”
ASME J. Tribol.
,
123
(
3
), pp.
469
473
.
16.
de Rooij
,
M. B.
, and
Schipper
,
D. J.
,
2000
, “
Analysis of Material Transfer From a Soft Workpiece to a Hard Tool: Part II—Experimental Verification of the Proposed Lump Growth Model
,”
ASME J. Tribol.
,
123
(
3
), pp.
474
478
.
17.
Ma
,
X.
,
De Rooij
,
M.
, and
Schipper
,
D.
,
2010
, “
A Load Dependent Friction Model for Fully Plastic Contact Conditions
,”
Wear
,
269
(
11–12
), pp.
790
796
.
18.
Hol
,
J.
,
Karupannasamy
,
D.K.
, and
Meinders
,
T.
,
2012
, “
Multi-Scale Friction Modeling for Manufacturing Processes: The Boundary Layer Regime
,”
International Manufacturing Science and Engineering Conference
,
Notre Dame, IN
,
June 4–8
, American Society of Mechanical Engineers, pp.
1077
1086
.
19.
Cocks
,
M.
,
1964
, “
Role of Displaced Metal in the Sliding of Flat Metal Surfaces
,”
J. Appl. Phys.
,
35
(
6
), pp.
1807
1814
.
20.
Landheer
,
D.
, and
Zaat
,
J.
,
1974
, “
The Mechanism of Metal Transfer in Sliding Friction
,”
Wear
,
27
(
1
), pp.
129
145
.
21.
Bernick
,
L. M.
,
Hilsen
,
R. R.
, and
Wandrei
,
C. L.
,
1978
, “
Development of a Quantitative Sheet Galling Test
,”
Wear
,
48
(
2
), pp.
323
346
.
22.
Torrance
,
A.
, and
Buckley
,
T.
,
1996
, “
A Slip-Line Field Model of Abrasive Wear
,”
Wear
,
196
(
1–2
), pp.
35
45
.
23.
Challen
,
J.
, and
Oxley
,
P.
,
1979
, “
An Explanation of the Different Regimes of Friction and Wear Using Asperity Deformation Models
,”
Wear
,
53
(
2
), pp.
229
243
.
24.
Schedin
,
E.
, and
Lehtinen
,
B.
,
1993
, “
Galling Mechanisms in Lubricated Systems: A Study of Sheet Metal Forming
,”
Wear
,
170
(
1
), pp.
119
130
.
25.
Schedin
,
E.
,
1994
, “
Galling Mechanisms in Sheet Forming Operations
,”
Wear
,
179
(
1–2
), pp.
123
128
.
26.
Roizard
,
X.
, and
von Stebut
,
J.
,
1991
, “
Wear Debris Formation and Tool Transfer Build-up in Sheet Metal Forming
,”
Proceedings of the 18th Leeds Lyon Symposium on Tribology
,
Institut National des Sciences Appliquees, Lyon, France
,
Sept. 3–6
.
27.
Lo
,
S.-W.
, and
Horng
,
T.-C.
,
1999
, “
Surface Roughening and Contact Behavior in Forming of Aluminum Sheet
,”
ASME J. Tribol.
,
121
(
2
), pp.
224
233
.
28.
Dohda
,
K.
, and
Kawai
,
N.
,
1990
, “
Compatibility Between Tool Materials and Workpiece in Sheet-Metal Ironing Process
,”
ASME J. Tribol.
,
112
(
2
), pp.
275
281
.
29.
Ahmed
,
R.
, and
Sutcliffe
,
M. P. F.
,
2001
, “
An Experimental Investigation of Surface Pit Evolution During Cold-Rolling or Drawing of Stainless Steel Strip
,”
ASME J. Tribol.
,
123
(
1
), pp.
1
7
.
30.
van der Heide
,
E.
, and
Schipper
,
D. J.
,
2004
, “
On the Frictional Heating in Single Summit Contacts: Towards Failure at Asperity Level in Lubricated Systems
,”
ASME J. Tribol.
,
126
(
2
), pp.
275
280
.
31.
Pothier
,
J.-M.
,
Roizard
,
X.
,
Hihn
,
J. Y.
,
Béteau
,
J.-F.
, and
Monteil
,
G.
,
2005
, “
Global Analysis Method of Friction Parameters in Strip-Drawing Tests
,”
ASME J. Tribol.
,
128
(
2
), pp.
414
421
.
32.
Mozgovoy
,
S.
,
Hardell
,
J.
,
Deng
,
L.
,
Oldenburg
,
M.
, and
Prakash
,
B.
,
2017
, “
Tribological Behavior of Tool Steel Under Press Hardening Conditions Using Simulative Tests
,”
ASME J. Tribol.
,
140
(
1
), p.
011606
.
33.
Li
,
W.
,
Zhang
,
L.
,
Wu
,
C.
,
Cui
,
Z.
, and
Niu
,
C.
,
2022
, “
Influence of Tool and Workpiece Properties on the Wear of the Counterparts in Contact Sliding
,”
ASME J. Tribol.
,
144
(
2
), p.
021702
.
34.
de Rooij
,
M. B.
,
van der Linde
,
G.
, and
Schipper
,
D. J.
,
2013
, “
Modelling Material Transfer on a Single Asperity Scale
,”
Wear
,
307
(
1–2
), pp.
198
208
.
35.
Johnson
,
K.
,
1970
, “
The Correlation of Indentation Experiments
,”
J. Mech. Phys. Solids
,
18
(
2
), pp.
115
126
.
36.
Almasri
,
A.
, and
Voyiadjis
,
G. Z.
,
2008
, “
Physically Based Constitutive Model for Body Centered Cubic Metals With Applications to Iron
,”
J. Eng. Mech.
,
134
(
7
), pp.
521
529
.
37.
Yang
,
Y.
,
Huang
,
L.
, and
Shi
,
Y.
,
2016
, “
Adhesion Suppresses Atomic Wear in Single-Asperity Sliding
,”
Wear
,
352–353
, pp.
31
41
.
38.
Zhao
,
K.
, and
Aghababaei
,
R.
,
2020
, “
Adhesive Wear Law at the Single Asperity Level
,”
J. Mech. Phys. Solids
,
143
, p.
104069
.
39.
Mishra
,
T.
,
de Rooij
,
M.
,
Shisode
,
M.
,
Hazrati
,
J.
, and
Schipper
,
D. J.
,
2020
, “
A Material Point Method Based Ploughing Model to Study the Effect of Asperity Geometry on the Ploughing Behaviour of an Elliptical Asperity
,”
Tribol. Int.
,
142
, p.
106017
.
40.
Hokkirigawa
,
K.
, and
Kato
,
K.
,
1988
, “
An Experimental and Theoretical Investigation of Ploughing, Cutting and Wedge Formation During Abrasive Wear
,”
Tribol. Int.
,
21
(
1
), pp.
51
57
.
41.
Kayaba
,
T.
,
Kato
,
K.
, and
Hokkirigawa
,
K.
,
1983
, “
Theoretical Analysis of the Plastic Yielding of a Hard Asperity Sliding on a Soft Flat Surface
,”
Wear
,
87
(
2
), pp.
151
161
.
42.
Menezes
,
P. L.
, and
Kailas
,
S. V.
,
2008
, “
Effect of Surface Roughness Parameters and Surface Texture on Friction and Transfer Layer Formation in tin–Steel Tribo-System
,”
J. Mater. Process. Technol.
,
208
(
1–3
), pp.
372
382
.
43.
Menezes
,
P. L.
,
Kailas
,
S. V.
, and
Lovell
,
M. R.
,
2011
, “
Role of Surface Texture, Roughness, and Hardness on Friction During Unidirectional Sliding
,”
Tribol. Lett.
,
41
(
1
), pp.
1
15
.
44.
Groche
,
P.
,
Christiany
,
M.
, and
Wu
,
Y.
,
2019
, “
Load-Dependent Wear in Sheet Metal Forming
,”
Wear
,
422–423
, pp.
252
260
.
You do not currently have access to this content.