Abstract

More detailed and accurate modeling is very important for analyzing and optimizing the tribological performance of the piston-ring-cylinder liner system. However, due to the difficulty of modeling and solving, theoretical studies on the three-dimensional (3D) tribodynamics of piston rings are limited. The tribodynamic model which couples the dynamics, mixed lubrication, and blow-by of piston-ring pack assemblies has not been found yet. Therefore, in this study, a 3D tribodynamic model of the piston-ring pack is developed considering the influence of piston secondary motion and the interaction forces and moments between piston ring and cylinder liner as well as between piston ring and ring groove. In addition to the ring end gaps, the influence of ring dynamics is also contained in the blow-by model. Coupled with gas flows and piston rotation, ring motions in the ring groove are investigated. It is found that ring dynamics has significant effects on the tribological performance, the axial reversing movement of piston ring is the main cause of gas pressure oscillation, piston motion has an obvious influence on the ring dynamics, the interaction forces and moments between piston and rings increase the secondary motion amplitude of piston, especially near the fire top dead center.

References

1.
Dolatabadi
,
N.
,
Forder
,
M.
,
Morris
,
N.
,
Rahmani
,
R.
,
Rahnejat
,
H.
, and
Howell-Smith
,
S.
,
2020
, “
Influence of Advanced Cylinder Coatings on Vehicular Fuel Economy and Emissions in Piston Compression Ring Conjunction
,”
Appl. Energy
,
259
, p.
114129
.
2.
Liu
,
Z.
,
Liang
,
F.
,
Zhai
,
L.
, and
Meng
,
X.
,
2021
, “
A Comprehensive Experimental Study on Tribological Performance of Piston Ring–Cylinder Liner Pair
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
236
(
1
), pp.
184
204
.
3.
Wen
,
C.
,
Meng
,
X.
,
Xie
,
Y.
,
Liu
,
R.
,
Kong
,
X.
,
Li
,
R.
,
Liu
,
Z.
, and
Fang
,
C.
,
2021
, “
Online Measurement of Piston-Assembly Friction with Wireless IMEP Method Under Fired Conditions and Comparison With Numerical Analysis
,”
Measurement
,
174
, p.
109009
.
4.
Liu
,
Z.
,
Meng
,
X.
,
Wen
,
C.
,
Yu
,
S.
, and
Zhou
,
Z.
,
2019
, “
On the Oil-Gas-Solid Mixed Bearing Between Compression Ring and Cylinder Liner Under Starved Lubrication and High Boundary Pressures
,”
Tribol. Int.
,
140
, p.
105869
.
5.
Li
,
T.
,
Ma
,
X.
,
Lu
,
X.
,
Wang
,
C.
,
Jiao
,
B.
,
Xu
,
H.
, and
Zou
,
D.
,
2019
, “
Lubrication Analysis for the Piston Ring of a Two-Stroke Marine Diesel Engine Taking Account of the Oil Supply
,”
Int. J. Engine Res.
,
22
(
3
), pp.
949
962
.
6.
Tomanik
,
E.
,
Profito
,
F.J.
, and
Zachariadis
,
D.C.
,
2013
, “
Modelling the Hydrodynamic Support of Cylinder Bore and Piston Rings With Laser Textured Surfaces
,”
Tribol. Int.
,
59
, pp.
90
96
.
7.
Liang
,
X.
,
Wang
,
X.
,
Liu
,
Y.
,
Wang
,
X.
,
Shu
,
G.
, and
Zhang
,
Z.
,
2020
, “
Simulation and Experimental Investigation on Friction Reduction by Partial Laser Surface Texturing on Piston Ring
,”
Tribol. Trans.
,
63
(
2
), pp.
371
381
.
8.
Tian
,
T.
,
Wong
,
V. W.
, and
Heywood
,
J. B.
,
1996
, “
A Piston Ring-Pack Film Thickness and Friction Model for Multigrade Oils and Rough Surfaces
,”
SAE Trans.
,
105
(
4
), pp.
1783
1795
.
9.
Rahmani
,
R.
,
Rahnejat
,
H.
,
Fitzsimons
,
B.
, and
Dowson
,
D.
,
2017
, “
The Effect of Cylinder Liner Operating Temperature on Frictional Loss and Engine Emissions in Piston Ring Conjunction
,”
Appl. Energy
,
191
, pp.
568
581
.
10.
Rahmani
,
R.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
,
2012
, “
Transient Elastohydrodynamic Lubrication of Rough New or Worn Piston Compression Ring Conjunction With an Out-of-Round Cylinder Bore
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
226
(
4
), pp.
284
305
.
11.
Wolff
,
A.
,
2014
, “
Simulation Based Study of the System Piston–Ring–Cylinder of a Marine Two-Stroke Engine
,”
Tribol. Trans.
,
57
(
4
), pp.
653
667
.
12.
Chen
,
W.-B.
,
Liu
,
D.-L.
,
Xu
,
J.-J.
,
Huang
,
R.-X.
,
Chen
,
Z.-Z.
,
Du
,
F.-M.
, and
Yan
,
Z.-J.
,
2019
, “
Modeling of Gas Pressure and Dynamic Behavior of the Piston Ring Pack for the Two-Stroke Opposed-Piston Engine
,”
ASME J. Tribol.
,
141
(
1
), p.
012203
.
13.
Tian
,
T.
,
Noordzij
,
L. B.
,
Wong
,
V. W.
, and
Heywood
,
J. B.
,
1998
, “
Modeling Piston-Ring Dynamics, Blowby, and Ring-Twist Effects
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
843
854
.
14.
Tian
,
T.
, and
Wong
,
V. W.
,
1999
, “
Modeling the Lubrication, Dynamics, and Effects of Piston Dynamic Tilt of Twin-Land Oil Control Rings in Internal Combustion Engines
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
119
129
.
15.
Tian
,
T.
,
2002
, “
Dynamic Behaviours of Piston Rings and Their Practical Impact. Part 1: Ring Flutter and Ring Collapse and Their Effects on Gas Flow and Oil Transport
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
216
(
4
), pp.
209
227
.
16.
Tian
,
T.
,
2002
, “
Dynamic Behaviours of Piston Rings and Their Practical Impact. Part 2: Oil Transport, Friction and Wear of Ring/Liner Interface and the Effects of Piston and Ring Dynamics
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
216
(
4
), pp.
229
247
.
17.
Liu
,
L.
, and
Tian
,
T.
,
2004
, “
A Three-Dimensional Model for Piston Ring-Pack Dynamics and Blow-By Gas Flow
,”
Proceedings of the ASME 2004 Internal Combustion Engine Division Fall Technical Conference
,
Long Beach, CA
,
Oct. 24–27
, pp.
639
649
.
18.
Baker
,
C. E.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
,
2012
, “
Influence of In-Plane Dynamics of Thin Compression Rings on Friction in Internal Combustion Engines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092801
.
19.
Baker
,
C.
,
Rahmani
,
R.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
,
2015
, “
On the Effect of Transient In-Plane Dynamics of the Compression Ring Upon Its Tribological Performance
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032512
.
20.
Baker
,
C.
,
Theodossiades
,
S.
,
Rahmani
,
R.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
,
2017
, “
On the Transient Three-Dimensional Tribodynamics of Internal Combustion Engine Top Compression Ring
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062801
.
21.
Turnbull
,
R.
,
Dolatabadi
,
N.
,
Rahmani
,
R.
, and
Rahnejat
,
H.
,
2019
, “
An Assessment of Gas Power Leakage and Frictional Losses From the Top Compression Ring of Internal Combustion Engines
,”
Tribol. Int.
,
142
, p.
105991
.
22.
Ahmed Ali
,
M. K.
,
Xianjun
,
H.
,
Fiifi Turkson
,
R.
, and
Ezzat
,
M.
,
2016
, “
An Analytical Study of Tribological Parameters Between Piston Ring and Cylinder Liner in Internal Combustion Engines
,”
Proc. Inst. Mech. Eng. K: J. Multi-Body Dyn.
,
230
(
4
), pp.
329
349
.
23.
Meng
,
X.
, and
Xie
,
Y.
,
2012
, “
A New Numerical Analysis for Piston Skirt–Liner System Lubrication Considering the Effects of Connecting Rod Inertia
,”
Tribol. Int.
,
47
, pp.
235
243
.
24.
Shahmohamadi
,
H.
,
Mohammadpour
,
M.
,
Rahmani
,
R.
,
Rahnejat
,
H.
,
Garner
,
C. P.
, and
Howell-Smith
,
S.
,
2015
, “
On the Boundary Conditions in Multi-Phase Flow Through the Piston Ring-Cylinder Liner Conjunction
,”
Tribol. Int.
,
90
, pp.
164
174
.
25.
Malagi
,
R. R.
,
2012
, “
Estimation of Blowby in Multi-Cylinder Diesel Engine Using Finite Element Approach
,”
SAE Technical Paper
,
1
(
0559
).
26.
Cheng
,
J.
,
Meng
,
X.
,
Xie
,
Y.
, and
Kong
,
X.
,
2016
, “
Blow-by and Tribological Performance of Piston Ring Pack During Cold Start and Warm Idle Operations
,”
Sci. China Technol. Sci.
,
59
(
7
), pp.
1085
1099
.
27.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Tech.
,
100
(
1
), pp.
12
17
.
28.
Patir
,
N.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Tech.
,
101
(
2
), pp.
220
229
.
29.
Wu
,
C.
, and
Zheng
,
L.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
ASME J. Tribol.
,
111
(
1
), pp.
83
90
.
30.
Greenwood
,
J. A.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
634
.
31.
Fang
,
C.
,
Meng
,
X.
, and
Xie
,
Y.
,
2017
, “
A Piston Tribodynamic Model With Deterministic Consideration of Skirt Surface Grooves
,”
Tribol. Int.
,
110
, pp.
232
251
.
32.
Meng
,
F. M.
,
Zhang
,
Y. Y.
,
Hu
,
Y. Z.
, and
Wang
,
H.
,
2007
, “
Thermo-elasto-hydrodynamic Lubrication Analysis of Piston Skirt Considering Oil Film Inertia Effect
,”
Tribol. Int.
,
40
(
7
), pp.
1089
1099
.
33.
Gu
,
C.
,
Meng
,
X.
,
Wang
,
S.
, and
Ding
,
X.
,
2019
, “
Research on Mixed Lubrication Problems of the Non-Gaussian Rough Textured Surface With the Influence of Stochastic Roughness in Consideration
,”
ASME J. Tribol.
,
141
(
12
), p.
121501
.
34.
Zhang
,
R.
,
Meng
,
X.
,
Lyu
,
B.
, and
Sun
,
K.
,
2021
, “
A Deterministic FE Contact Analysis of 3D Rough Surfaces With Textures and Comparison With Classic Statistical Contact Models
,”
Sci. China Technol. Sci.
,
64
(
2
), pp.
297
316
.
35.
Morales-Espejel
,
G. E.
,
2009
, “
Flow Factors for Non-Gaussian Roughness in Hydrodynamic Lubrication: An Analytical Interpolation
,”
Proc. Inst. Mech. Eng., Part C
,
223
(
6
), pp.
1433
1441
.
36.
Harigaya
,
Y.
,
Suzuki
,
M.
,
Toda
,
F.
, and
Takiguchi
,
M.
,
2006
, “
Analysis of Oil Film Thickness and Heat Transfer on a Piston Ring of a Diesel Engine: Effect of Lubricant Viscosity
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
685
693
.
37.
Roelands
,
C. J. A.
,
Winer
,
W. O.
, and
Wright
,
W. A.
,
1971
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils (Dr In Dissertation at Technical University of Delft, 1966)
,”
ASME J. Tribol.
,
93
(
1
), pp.
209
210
.
38.
Dowson
,
D. C.
, and
Higginson
,
G. R.
,
1966
,
Elasto-Hydrodynamic Lubrication: the Fundamentals of Roller and Gear Lubrication.
, Vol.
23
,
Pergamon Press
,
Oxford
.
39.
Tomanik
,
E.
,
2008
, “
Friction and Wear Bench Tests of Different Engine Liner Surface Finishes
,”
Tribol. Int.
,
41
(
11
), pp.
1032
1038
.
40.
Cash
,
J.
,
2000
, “
Modified Extended Backward Differentiation Formulae for the Numerical Solution of Stiff Initial Value Problems in ODEs and DAEs
,”
J. Comput. Appl. Math.
,
125
(
1–2
), pp.
117
130
.
41.
Liu
,
R.
,
Jing
,
L.
,
Meng
,
X.
, and
Lyu
,
B.
,
2021
, “
Mixed Elastohydrodynamic Analysis of a Coupled Journal-Thrust Bearing System in a Rotary Compressor Under High Ambient Pressure
,”
Tribol. Int.
,
159
, p.
106943
.
42.
Li
,
R.
,
Meng
,
X.
,
Li
,
W.
, and
Dong
,
J.
,
2019
, “
A New Comprehensive Tribo-Dynamic Analysis for Lubricated Translational Joints in Low-Speed Two-Stroke Marine Engines
,”
Int. J. Engine Res.
,
21
(
8
), pp.
1336
1361
.
43.
Styles
,
G.
,
Rahmani
,
R.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
,
2014
, “
In-Cycle and Life-Time Friction Transience in Piston Ring–Liner Conjunction Under Mixed Regime of Lubrication
,”
Int. J. Engine Res.
,
15
(
7
), pp.
862
876
.
44.
Gu
,
C.
,
Meng
,
X.
,
Xie
,
Y.
, and
Fan
,
J.
,
2016
, “
A Thermal Mixed Lubrication Model to Study the Textured Ring/Liner Conjunction
,”
Tribol. Int.
,
101
, pp.
178
193
.
You do not currently have access to this content.