Abstract

Molybdenum disulfide (MoS2) is popularly used in tribological applications because of its excellent lubricating properties. However, its performance needs to be further improved. In the present study, an attempt has been made to improve the wear resistance of pure MoS2 coating by incorporating TiO2 and ZrO2 nanoparticles as a reinforcement material into the MoS2 base matrix. The composite MoS2-TiO2-ZrO2 coating was applied onto substrate surface by the bonding technique. The tribological performance of the coated specimens was evaluated by employing various operating conditions (such as wt% of compounding elements, contact pressure, and sliding speed) using pin-on-disc friction and wear test rig. A statistical model was developed to identify the significant factors affecting the friction coefficient (COF) and wear-rate of the composite coating material. The design of experiment (DOE) was formulated by response surface methodology (RSM) approach to cut down the number of experiments and to develop a mathematical model between the key process parameters such as wt% of compounding elements, contact pressures, and sliding speeds. Analysis of variance (ANOVA) was executed for checking the adequacy of the empirical models developed. It was discovered that the COF and wear-rate of composite MoS2-TiO2-ZrO2 coating significantly affected by the wt% addition of ZrO2. The SEM and optical microscopy analyses of the worn surfaces and transfer films indicated that the tribological properties of composite MoS2-TiO2-ZrO2 coating were significantly improved compared to pure MoS2 coating.

References

1.
Erdemir
,
A.
,
2000
, “Solid Lubricants and Self-Lubricating Films,”
Modern Tribology Handbook
,
B
Bhushan
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
4
39
.
2.
Liang
,
J.
,
2013
, “Bonded Solid Lubrication Coatings, Process, and Applications,”
Encyclopedia of Tribology
,
Q. J.
Wang
, and
Y. W.
Chung
, eds.,
Springer
,
Boston, MA
, pp.
242
247
.
3.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2017
, “
Influence of Tribology on Global Energy Consumption, Costs and Emissions
,”
Friction
,
5
(
3
), pp.
263
284
.
4.
Donnet
,
C.
, and
Erdemir
,
A.
,
2004
, “
Solid Lubricant Coatings: Recent Developments and Future Trends
,”
Tribol. Lett.
,
17
(
3
), pp.
389
397
.
5.
Amaro
,
R. I.
,
Martins
,
R. C.
,
Seabra
,
J. O.
,
Renevier
,
N. M.
, and
Teer
,
D. G.
,
2005
, “
Molybdenum Disulphide/Titanium Low Friction Coating for Gears Application
,”
Tribol. Int.
,
38
(
4
), pp.
423
434
.
6.
Colas
,
G.
,
Saulot
,
A.
,
Regis
,
E.
, and
Berthier
,
Y.
,
2015
, “
Investigation of Crystalline and Amorphous MoS2 Based Coatings: Towards Developing New Coatings for Space Applications
,”
Wear
,
330–331
, pp.
448
460
.
7.
Wang
,
P.
,
Qiao
,
L.
,
Xu
,
J.
,
Li
,
W.
, and
Liu
,
W.
,
2015
, “
Erosion Mechanism of MoS2-Based Films Exposed to Atomic Oxygen Environments
,”
ACS Appl. Mater. Interfaces
,
7
(
23
), pp.
12943
12950
.
8.
Tedstone
,
A. A.
,
Lewis
,
D. J.
,
Hao
,
R.
,
Mao
,
S. M.
,
Bellon
,
P.
,
Averback
,
R. S.
,
Warrens
,
C. P.
,
West
,
K. R.
,
Howard
,
P.
,
Gaemers
,
S.
, and
Dillon
,
S. J.
,
2015
, “
Mechanical Properties of Molybdenum Disulfide and the Effect of Doping: An In Situ TEM Study
,”
ACS Appl. Mater. Interfaces
,
7
(
37
), pp.
20829
20834
.
9.
Ilie
,
F.
, and
Tita
,
C.
,
2012
, “
Modelling and Experimentation of Solid Lubrification With Powder MoS2 Through Self-Repairing and Self-Replenishing
,”
Adv. Mater. Res.
,
463–464
, pp.
1120
1124
.
10.
Totten
,
G. E.
,
2017
,
Solid Lubricants ASM Handbook
,
ASM International
,
Ohio
, pp.
191
206
.
11.
Vazirisereshk
,
M. R.
,
Martini
,
A.
,
Strubbe
,
D. A.
, and
Baykara
,
M. Z.
,
2019
, “
Solid Lubrication With MoS2: A Review
,”
Lubricants
,
7
(
7
), pp.
1
35
.
12.
Shankara
,
A.
,
Menezes
,
P. L.
,
Simha
,
K. R.
, and
Kailas
,
S. V.
,
2008
, “
Study of Solid Lubrication With MoS2 Coating in the Presence of Additives Using Reciprocating Ball-on-Flat Scratch Tester
,”
Sadhana
,
33
(
3
), pp.
207
220
.
13.
Shang
,
K.
,
Zheng
,
S.
,
Ren
,
S.
,
Pu
,
J.
,
He
,
D.
, and
Liu
,
S.
,
2018
, “
Improving the Tribological and Corrosive Properties of MoS2-Based Coatings by Dual-Doping and Multilayer Construction
,”
Appl. Surf. Sci.
,
437
, pp.
233
244
.
14.
Ahmed
,
O.
, and
Jayatissa
,
A. H.
,
2017
, “
Tribological Properties of Multilayer TiN and MoS2 Thin Films
,”
Surf. Colloid Sci.
,
2
(
4
), pp.
137
142
.
15.
Bulbul
,
F.
, and
Efeoglu
,
I.
,
2010
, “
MoS2-Ti Composite Films Having (002) Orientation and Low Ti Content
,”
Crystallogr. Rep.
,
55
(
7
), pp.
1177
1182
.
16.
Renevier
,
N. M.
,
Hamphire
,
J.
,
Fox
,
V. C.
,
Witts
,
J.
,
Allen
,
T.
, and
Teer
,
D. G.
,
2001
, “
Advantages of Using Self-Lubricating, Hard, Wear-Resistant MoS2-Based Coatings
,”
Surf. Coat. Technol.
,
142–144
, pp.
67
77
.
17.
Ding
,
X. Z.
,
Zeng
,
X. T.
,
He
,
X. Y.
, and
Chen
,
Z.
,
2010
, “
Tribological Properties of Cr- and Ti-Doped MoS2 Composite Coatings Under Different Humidity Atmosphere
,”
Surf. Coat. Technol.
,
205
(
1
), pp.
224
231
.
18.
Borgaonkar
,
A. V.
, and
Syed
,
I.
,
2020
, “
Effect of Coatings on Rolling Contact Fatigue and Tribological Parameters of Rolling/Sliding Contacts Under Dry/Lubricated Conditions: A Review
,”
Sadhana
,
45
(
1
), pp.
1
16
.
19.
Essa
,
F. A.
,
Zhang
,
Q.
,
Huang
,
X.
,
Ali
,
M. K.
,
Elagouz
,
A.
, and
Abdelkareem
,
M. A.
,
2017
, “
Effects of ZnO and MoS2 Solid Lubricants on Mechanical and Tribological Properties of M50-Steel-Based Composites at High Temperatures: Experimental and Simulation Study
,”
Tribol. Lett.
,
65
(
1
), pp.
1
29
.
20.
Dominguez-Meister
,
S.
,
Rojas
,
T. C.
,
Brizuela
,
M.
, and
Sanchez-Lopez
,
J. C.
,
2017
, “
Solid Lubricant Behavior of MoS2 and WSe2-Based Nanocomposite Coatings
,”
Sci. Technol. Adv. Mater.
,
18
(
1
), pp.
122
133
.
21.
Vadiraj
,
A.
,
Kamaraj
,
M.
, and
Sreenivasan
,
V. S.
,
2012
, “
Effect of Solid Lubricants on Friction and Wear Behaviour of Alloyed Gray Cast Iron
,”
Sadhana
,
37
(
5
), pp.
569
577
.
22.
Asmoro
,
G.
,
Surojo
,
E.
,
Ariawan
,
D.
,
Muhayat
,
N.
, and
Raharjo
,
W. W.
,
2018
, “
Role of Solid Lubricant (MoS2 and Graphite) Variations on Characteristics of Brake Lining Composite
,”
Mater. Sci. Eng. C.
,
420
(
1
), pp.
1
8
.
23.
Borgaonkar
,
A.
, and
Syed
,
I.
,
2021
, “
Friction and Wear Behavior of Composite MoS2-TiO2 Coating Material in Dry Sliding Contact
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
1
), pp.
1
13
.
24.
Borgaonkar
,
A. V.
, and
Syed
,
I.
,
2020
, “Effect of Temperature on the Tribological Performance of MoS2-TiO2 Coating Material,”
Advances in Applied Mechanical Engineering. Lecture Notes in Mechanical Engineering
,
H.
Voruganti
,
K.
Kumar
,
P.
Krishna
, and
X.
Jin
, eds.,
Springer
,
Singapore
, pp.
611
618
.
25.
Nouioua
,
M.
,
Yallese
,
M. A.
,
Khettabi
,
R.
,
Belhadi
,
S.
,
Bouhalais
,
M. L.
, and
Girardin
,
F.
,
2017
, “
Investigation of the Performance of the MQL, Dry, and Wet Turning by Response Surface Methodology (RSM) and Artificial Neural Network (ANN)
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2485
2504
.
26.
Karkalos
,
N. E.
,
Galanis
,
N. I.
, and
Markopoulos
,
A. P.
,
2016
, “
Surface Roughness Prediction for the Milling of Ti–6Al–4V ELI Alloy With the Use of Statistical and Soft Computing Techniques
,”
Measurement
,
90
, pp.
25
35
.
27.
Pokorny
,
P.
,
Tej
,
P.
, and
Szelag
,
P.
,
2016
, “
Discussion About Magnesium Phosphating
,”
Metalurgija
,
55
(
3
), pp.
507
510
.
28.
ASTM G99-17
,
2017
,
Standard Test Method for Wear Testing With a Pin-on-Disk Apparatus
,
ASTM International
,
West Conshohocken, PA
.
29.
Yang
,
J. F.
,
Parakash
,
B.
,
Hardell
,
J.
, and
Fang
,
Q. F.
,
2012
, “
Tribological Properties of Transition Metal Di-Chalcogenide Based Lubricant Coatings
,”
Front. Mater. Sci.
,
6
(
2
), pp.
116
127
.
30.
Sakinah
,
M. H.
,
Amirruddin
,
A. K.
,
Kadirgama
,
K.
,
Ramasamy
,
D.
,
Rahman
,
M. M.
, and
Noor
,
M. M.
,
2016
, “
The Application of Response Surface Methodology in the Investigation of the Tribological Behavior of Palm Cooking Oil Blended in Engine Oil
,”
Adv. Tribol.
,
2016
, pp.
1
11
.
You do not currently have access to this content.