Abstract

As microtopography can influence the contact behavior of materials, it is of great significance to study the correlation between morphology characterization parameters and contact performance. In the light of complex relevance of parameters, a method for screening roughness parameters (RP) to characterize contact performance is constructed to get the maximum influence parameters on the contact stress (CS) and avoid the error of experiential selection. First, Pearson's coefficient and back propagation (BP) neural network are utilized to elaborate on correlation level between RP and CS and to build the regression model. Then global sensitivity analysis (Sobol) and local sensitivity analysis (MIV and Garson) are introduced to demonstrate RP quantitative influences on CS and select main RP for characterizing contact performance. The research shows (1) in the correlation analysis, RP with high correlation and noncollinearity on σmax are Sa, Sdq, S5p, Spk, and Svk; With regard to Mpmax and τmax, Sa, S5p, Sdq, and Vmp are on display, (2) RP importance sequence based on the results of correlation analysis is Sa, Spk, Sdq, Svk, S5p for σmax, and Sa, Vmp, Sdq, S5p for Mpmax and τmax, and (3) For the comprehensive main parameters model, RP for characterizing contact performance under the three contact stresses are Sa, Spk, and Vmp, belonging to height parameter, function parameter, and volume parameter, respectively. According to definition, all of them can significantly affect the stress concentration and distribution on contact surface of materials, which validates the rationality of the method.

References

1.
Whitehouse
,
D. J.
,
2010
,
Handbook of Surface and Nanometrology
,
CRC Press
,
London
.
2.
Shi
,
Z.
,
Jiang
,
H.
, and
Zhang
,
M.
,
2016
, “
Multi-Scale Representation for Skin Models in Geometrical Product Specifications
,”
Opt. Precis. Eng.
,
24
(
7
), pp.
1647
1654
.
3.
Li
,
C.
, and
Dong
,
S.
,
2000
, “
The Trends of Characterizing 3D Surface Microtopography
,”
China Mech. Eng.
,
11
(
5
), pp.
16
20
.
4.
Han
,
X.
,
Chen
,
X.
,
Yang
,
X.
,
Bai
,
H.
,
Li
,
Z.
, and
Su
,
X.
,
2006
, “
Application
,”
Proceedings of the IEEE
,
Zhuhai, China
,
Jan. 18–21
, pp.
131
135
.
5.
Temsamani
,
A. B.
,
Vandenplas
,
S.
, and
van Biesen
,
L.
,
2001
, “
Optimal Model for the Diffraction Effect in the Ultrasonic Field of Piston Transducers
,”
J. Comput. Acoust.
,
9
(
2
), pp.
461
476
.
6.
Li
,
B.
, and
Liu
,
Y.
,
2004
, “
Study of Developing Tendency of Surface Roughness
,”
Tool Eng.
,
38
(
1
), pp.
63
67
.
7.
Mainsah
,
E.
,
Greenwood
,
J. A.
, and
Chetwynd
,
D. G.
,
2013
,
Metrology and Properties of Engineering Surfaces
,
Springer
,
Berlin
.
8.
Leach
,
R.
,
2013
,
Characterisation of Areal Surface Texture
,
Springer
,
Berlin
.
9.
He
,
B.
,
Petzing
,
J.
,
Webb
,
P.
, and
Leach
,
R.
,
2015
, “
Improving Copper Plating Adhesion on Glass Using Laser Machining Techniques and Areal Surface Texture Parameters
,”
Opt. Lasers Eng.
,
75
, pp.
39
47
.
10.
Draganovská
,
D.
,
Ižaríková
,
G.
,
Brezinová
,
J
, and
Guzanová
,
A.
,
2015
, “
The Study of Parameters of Surface Roughness by the Correlation Analysis
,”
Mater. Sci. Forum
,
818
(
15
), pp.
15
18
. www.scientific.net/MSF.818.15
11.
Qi
,
Q.
,
Li
,
T.
,
Scott P
,
J.
, and
Jiang
,
X.
,
2014
, “
A Correlational Study of Areal Surface Texture Parameters on Some Typical Machined Surfaces
,”
13th CIRP Conference on Computer Aided Tolerancing: CAT 2014
,
Hangzhou, China
,
May 11–14
.
12.
Sedlaček
,
M.
,
Podgornik
,
B.
, and
Vižintin
,
J.
,
2012
, “
Correlation Between Standard Roughness Parameters Skewness and Kurtosis and Tribological Behaviour of Contact Surfaces
,”
Tribol. Int.
,
48
, pp.
102
112
.
13.
Sedlaček
,
M.
,
Podgornik
,
B.
, and
Vižintin
,
J.
,
2009
, “
Influence of Surface Preparation on Roughness Parameters, Friction and Wear
,”
Wear
,
266
(
3–4
), pp.
482
487
.
14.
International Organization for Standardization
,
2012
, “
ISO 25178-2: 2012: Geometrical Product Specifications (GPS)-Surface Texture: Areal–Part 2: Terms, Definitions and Surface Texture Parameters
,” https://www.iso.org/standard/42785.html
15.
Wen
,
Y.
,
Tang
,
J.
,
Zhou
,
W.
, and
Zhu
,
C.
,
2018
, “
A New Elliptical Microcontact Model Considering Elastoplastic Deformation
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
232
(
11
), pp.
1352
1364
.
16.
Wen
,
Y.
,
Tang
,
J.
,
Zhou
,
W.
, and
Li
,
L.
,
2020
, “
A Reconstruction and Contact Analysis Method of Three-Dimensional Rough Surface Based on Ellipsoidal Asperity
,”
ASME J. Tribol.
,
142
(
4
), pp.
1271
1283
.
17.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
London
.
18.
Muñoz-Escalona
,
P.
, and
Maropoulos
,
P. G.
,
2010
, “
Artificial Neural Networks for Surface Roughness Prediction When Face Milling Al 7075-T7351
,”
J. Mater. Eng. Perform.
,
19
(
2
), pp.
185
193
.
19.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.
20.
Lipiński
,
D.
, and
Bałasz
,
B.
,
2018
, “
Modelling of Surface Roughness and Grinding Forces Using Artificial Neural Networks with Assessment of the Ability to Data Generalization
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
1335
1347
.
21.
Li
,
J.
,
Cheng
,
J.
,
Shi
,
J.
, and
Huang
,
F.
,
2012
, “Brief Introduction of Back Propagation (BP) Neural Network Algorithm and its Improvement,”
Advances in Computer Science and Information Engineering. Advances in Intelligent and Soft Computing
,
D.
Jin
, and
S.
Lin
, eds., vol
169
,
Springer
,
Berlin/Heidelberg
, pp.
553
558
.
22.
Zhang
,
X.
, and
Gao
,
Y.
,
2011
, “
Based on Momentum Method BP Neural Network
,”
Proceedings of the SPIE 8193, International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications
,
Beijing, China
,
Sept. 8
, p.
81932N
.
23.
Castellano
,
G.
,
Fanelli A
,
M.
, and
Pelillo
,
M.
,
1997
, “
An Iterative Pruning Algorithm for Feedforward Neural Networks
,”
IEEE Trans. Neural Networks
,
8
(
3
), pp.
519
531
.
24.
Wang
,
J.
,
Liu
,
L.
, and
Pan
,
X.
,
2020
, “
Pruning Algorithm of Convolutional Neural Network Based on Optimal Threshold
,”
Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence
,
New York
, pp.
50
54
.
25.
Li
,
X.
, and
Li
,
X.
,
2013
, “
An Improved Correlation Pruning Algorithm for Artificial Neural Network
,”
Electr. Des. Eng.
,
21
(
8
), pp.
65
67
.
26.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
27.
Sobol,
I.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Modell. Comput. Exp.
,
1
(
4
), pp.
407
414
. http://www.andreasaltelli.eu/file/repository/sobol1993
28.
Zadeh
,
F. K.
,
Nossent
,
J.
,
Sarrazin
,
F.
,
Pianosi
,
F.
,
van Griensven
,
A.
,
Wagener
,
T.
, and
Bauwens
,
W.
,
2017
, “
Comparison of Variance-Based and Moment-Independent Global Sensitivity Analysis Approaches by Application to the SWAT Model
,”
Environ. Modell. Softw.
,
91
, pp.
210
222
.
29.
Sobol’
,
I. M.
,
Asotsky
,
D.
,
Kreinin
,
A.
, and
Kucherenko
,
S.
,
2011
, “
Construction and Comparison of High-Dimensional Sobol'generators
,”
Wilmott
,
2011
(
56
), pp.
64
79
.
30.
Ballester-Ripoll
,
R.
,
Paredes
,
E. G.
, and
Pajarola
,
R.
,
2019
, “
Sobol Tensor Trains for Global Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
183
, pp.
311
322
.
31.
Tian
,
P.
,
Zhan
,
G. F.
, and
Nai
,
L.
,
2015
, “
A Variable Selection for Asphalt Pavement Performance Based on RBF Neural Network
,”
Appl. Mech. Mater.
,
3843
(
1490
), pp.
1222
1225
. www.scientific.net/AMM.744-746.1222
32.
Zhang
,
X.
,
Chen
,
L.
,
Sun
,
Y.
,
Bai
,
Y.
,
Huang
,
Y.
, and
Chen
,
K.
,
2018
, “
Determination of Zinc Oxide Content of Mineral Medicine Calamine Using Near-Infrared Spectroscopy Based on MIV and BP-ANN Algorithm
,”
Spectrochim. Acta, Part A
,
193
, pp.
133
140
.
33.
Dombi
,
G. W.
,
Nandi
,
P.
,
Saxe
,
J. M.
,
Ledgerwood
,
A. M.
, and
Lucas
,
C. E.
,
1995
, “
Prediction of Rib Fracture Injury Outcome by an Artificial Neural Network
,”
J. Trauma Acute Care Surg.
,
39
(
5
), pp.
915
921
.
34.
Ghanizadeh
,
A. R.
,
Heidarabadizadeh
,
N.
, and
Jalali
,
F.
,
2020
, “
Artificial Neural Network Back-Calculation of Flexible Pavements With Sensitivity Analysis Using Garson’s and Connection Weights Algorithms
,”
Innov. Infrastruct. Solut.
,
5
(
2
), pp.
1
19
.
35.
Maozhun
,
S.
, and
Ji
,
L.
,
2017
, “
Improved Garson Algorithm Based on Neural Network Model
,”
29th Chinese Control and Decision Conference (CCDC), IEEE
,
Chongqing, China
,
May 28–30
, pp.
4307
4312
.
36.
Garson
,
D. G.
,
1991
, “
Interpreting Neural Network Connection Weights
,”
AI Expert
,
6
(
4
), pp.
47
51
.
37.
Goh
,
A. T.
,
1995
, “
Back-Propagation Neural Networks for Modeling Complex Systems
,”
Artif. Intell. Eng.
,
9
(
3
), pp.
143
151
.
38.
Schober
,
P.
,
Boer
,
C.
, and
Schwarte
,
L. A.
,
2018
, “
Correlation Coefficients: Appropriate Use and Interpretation
,”
Anesth. Analg.
,
126
(
5
), pp.
1763
1768
.
39.
Stathakis
,
D.
,
2009
, “
How Many Hidden Layers and Nodes?
,”
Int. J. Remote Sens.
,
30
(
8
), pp.
2133
2147
.
40.
Sheela
,
K. G.
, and
Deepa
,
S. N.
,
2013
, “
Review on Methods to Fix Number of Hidden Neurons in Neural Networks
,”
Math. Probl. Eng.
,
2013
, pp.
1
11
. .
41.
Dong
,
W. P.
,
Sullivan
,
P. J.
, and
Stout
,
K. J.
,
1994
, “
Comprehensive Study of Parameters for Characterising Three-Dimensional Surface Topography: III: Parameters for Characterising Amplitude and Some Functional Properties
,”
Wear
,
178
(
1–2
), pp.
29
43
.
You do not currently have access to this content.