Abstract

The effects of thermal conductivity, heat capacity, thermal inertia, and slide-roll ratio (SRR) on point elastohydrodynamic lubrication (EHL) are discussed with engineering ceramics and steel by a non-Newtonian thermal EHL analysis. When the thermal conductivities of contacting materials are significantly different, the film thickness is greatly affected by which material has the higher velocity. However, the film thickness is dominated by the heat capacity when the difference in thermal conductivity is not large. In contact of materials with the same mechanical and thermal properties, the film thickness and friction coefficient are influenced by the thermal inertia.

References

1.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication
,
Pergamon
,
Oxford
.
2.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1981
,
Ball Bearing Lubrication
,
John Wiley & Sons
,
New York
.
3.
Gohar
,
R.
,
2001
,
Elastohydrodynamics
,
Imperial College
,
London
.
4.
Dowson
,
D.
, and
Ehret
,
P.
,
1999
, “
Past, Present and Future Studies in Elastohydrodynamics
,”
Proc. Inst. Mech. Eng., Part J
,
213
(
5
), pp.
317
333
.
5.
Spikes
,
H. A.
,
2006
, “
Sixty Years of EHL
,”
Lubr. Sci.
,
18
(
4
), pp.
265
291
.
6.
Kumar
,
P.
,
Anuradha
,
P.
,
Khonsari
,
M. M.
, and
Hooke
,
C. J.
,
2010
, “
Some Important Aspects of Thermal Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part C
,
224
(
12
), pp.
2588
2598
.
7.
Lugt
,
P. M.
, and
Morales-Espejel
,
G. E.
,
2011
, “
A Review of Elasto-Hydrodynamic Lubrication Theory
,”
Tribol. Trans.
,
54
(
3
), pp.
470
496
.
8.
Zhu
,
D.
, and
Wang
,
Q. J.
,
2011
, “
Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect, Contributions
,”
ASME J. Tribol.
,
133
(
4
), p.
041001
.
9.
Morales-Espejel
,
G. E.
,
2014
, “
Surface Roughness Effects in Elastohydrodynamic Lubrication: A Review With Contributions
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
11
), pp.
1217
1242
.
10.
Spikes
,
H. A.
, and
Zhang
,
J.
,
2014
, “
History, Origins and Prediction of Elastohydrodynamic Friction
,”
Tribol. Lett.
,
56
(
1
), pp.
1
25
.
11.
Cameron
,
A.
,
1958
, “
The Viscosity Wedge
,”
ASLE Trans.
,
1
(
2
), pp.
248
253
.
12.
Yang
,
P.
,
Qu
,
S.
,
Kaneta
,
M.
, and
Nishikawa
,
H.
,
2001
, “
Formation of Steady Dimples in Point TEHL Contacts
,”
ASME J. Tribol.
,
123
(
1
), pp.
42
49
.
13.
Kaneta
,
M.
, and
Yang
,
P.
,
2003
, “
Effects of Thermal Conductivity of Contacting Surfaces on Point EHL Contacts
,”
ASME J. Tribol.
,
125
(
4
), pp.
731
738
.
14.
Kaneta
,
M.
,
Yang
,
P.
, and
Hooke
,
C. J.
,
2010
, “
Effects of the Thermal Conductivity of Contact Materials on Elastohydrodynamic Lubrication Characteristics
,”
Proc. Inst. Mech. Eng., Part C
,
224
(
12
), pp.
2577
2587
.
15.
Kaneta
,
M.
,
Yang
,
P.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2015
, “
Fundamentals of Thermal Elastohydrodynamic Lubrication in Si3N4 and Steel Circular Contacts
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
8
), pp.
929
939
.
16.
Kaneta
,
M.
,
Sperka
,
P.
,
Yang
,
P.
,
Krupka
,
I.
,
Yang
,
P.
, and
Hartl
,
M.
,
2018
, “
Thermal Elastohydrodynamic Lubrication of Ceramic Materials
,”
STLE Trans.
,
61
(
5
), pp.
869
879
.
17.
Larsson
,
R.
,
Larsson
,
P. O.
,
Eriksson
,
E.
,
Sjöberg
,
M.
, and
Höglund
,
E.
,
2000
, “
Lubricant Properties for Input to Hydrodynamic and Elastohydrodynamic Lubrication Analyses
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
1
), pp.
17
27
.
18.
Larsson
,
R.
, and
Andersson
,
O.
,
2000
, “
Lubricant Thermal Conductivity and Heat Capacity Under High Pressure
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
4
), pp.
337
342
.
19.
Habchi
,
W.
,
Vergne
,
P.
,
Bair
,
S.
,
Andersson
,
O.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G. E.
,
2010
, “
Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behaviour of Circular TEHD Contacts
,”
Tribol. Int.
,
43
(
10
), pp.
1842
1850
.
20.
Bair
,
S.
,
Vergne
,
P.
,
Kumar
,
P.
,
Poll
,
G.
,
Krupka
,
I.
,
Hartl
,
M.
,
Habchi
,
W.
, and
Larsson
,
R.
,
2015
, “
Comment on “History, Origins and Prediction of Elastohydrodynamic Friction” by Spikes and Jie
,”
Tribol. Lett.
,
58
(
16
), pp.
1
8
.
21.
Spikes
,
H.
, and
Zhang
,
J.
,
2015
, “
Reply to the Comment by Scott Bair, Philippe Vergne, Punit Kumar, Gerhard Poll, Ivan Krupka, Martin Hartl, Wassim Habchi, Roland Larson on ‘‘History, Origins and Prediction of Elastohydrodynamic Friction’’ by Spikes and Jie in Tribology Letters
,”
Tribol. Lett.
,
58
(
17
), pp.
1
6
.
22.
Liu
,
X.
,
Jiang
,
M.
,
Yang
,
P.
, and
Kaneta
,
M.
,
2005
, “
Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model
,”
ASME J. Tribol.
,
127
(
1
), pp.
70
81
.
23.
Ohno
,
N.
,
2007
, “
High-Pressure Behavior of Toroidal CVT Fluid for Automobile
,”
Tribol. Int.
,
40
(
2
), pp.
233
238
.
24.
Ohno
,
N.
, and
Hirano
,
F.
,
2001
, “
High-Pressure Rheology Analysis of Traction Oils Based on Free Volume Measurement
,”
Lubr. Eng.
,
57
(
7
), pp.
16
22
.
25.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
26.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier
,
Amsterdam
.
27.
Cui
,
J.
,
Yang
,
P.
,
Kaneta
,
M.
, and
Krupka
,
I.
,
2017
, “
Numerical Study on the Interaction of Transversely Oriented Ridges in Thermal Elastohydrodynamic Lubrication Point Contacts Using the Eyring Shear-Thinning Model
,”
Proc. Inst. Mech. Eng., Part J
,
231
(
1
), pp.
93
106
.
28.
Krupka
,
I.
,
Hartl
,
M.
,
Matsuda
,
K.
,
Nishikawa
,
H.
,
Wang
,
J.
,
Guo
,
F.
,
Yang
,
P.
, and
Kaneta
,
M.
,
2019
, “
Deformation of Rough Surfaces in Point EHL Contacts
,”
Tribol. Lett.
,
67
(
2
), p.
33
.
29.
Kaneta
,
M.
,
Matsuda
,
K.
,
Wang
,
J.
, and
Yang
,
P.
,
2020
, “
Numerical Study on Effect of Dimples on Tribo-Characteristics in Non-Newtonian Thermal Elastohydrodynamic Lubrication Point Contacts With Different Mechanical and Thermal Properties
,”
ASME J. Tribol.
,
142
(
4
), p.
041601
.
30.
Kaneta
,
M.
,
Matsuda
,
K.
,
Wang
,
J.
, and
Yang
,
P.
,
2020
, “
Numerical Study on Effect of Thermal Conductivity in Point Contacts With Longitudinal Roughness on Abnormal Pressure Distribution
,”
ASME J. Tribol.
,
142
(
12
), p.
121601
.
31.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2014
, “
Friction Reduction in Elastohydrodynamic Contacts by Thin Layer Thermal Insulation
,”
Tribol. Lett.
,
53
(
2
), pp.
477
486
.
32.
Habchi
,
W.
,
2014
, “
A Numerical Model for the Solution of Thermal Elastohydrodynamic Lubrication in Coated Circular Contacts
,”
Tribol. Int.
,
73
, pp.
57
68
.
33.
Greenwood
,
J. A.
, and
Kauzlarich
,
J. J.
,
1973
, “
Inlet Shear Heating in Elastohydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
95
(
4
), pp.
417
426
.
34.
Murch
,
L. E.
, and
Wilson
,
W. R. D.
,
1975
, “
A Thermal Elastohydrodynamic Inlet Zone Analyses
,”
ASME J. Lubr. Technol.
,
97
(
2
), pp.
212
216
.
35.
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
,
1999
, “
Thermal Effects in Elliptical Contacts With Spin Conditions
,”
Proceedings of the 25th Leeds-Lyon Symposium on Tribology, D. Dowson, ed.
,
Lyon, Elsevier
,
Amsterdam
, Sept. 8–11, pp.
685
703
.
36.
Kim
,
H. J.
,
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
,
2001
, “
Thermal Elastohydrodynamic Analysis of Circular Contacts—Part 1: Newtonian Model
,”
Proc. Inst. Mech. Eng., Part J
,
215
(
4
), pp.
339
352
.
37.
Kaneta
,
M.
,
Shigeta
,
T.
, and
Yang
,
P.
,
2005
, “
Effects of Compressive Heating on Traction Force and Film Thickness in Point EHL Contacts
,”
ASME J. Tribol.
,
127
(
2
), pp.
435
442
.
38.
Sui
,
P. C.
, and
Sadeghi
,
F.
,
1991
, “
Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
113
(
2
), pp.
391
397
.
39.
Venner
,
C. H.
, and
Bos
,
J.
,
1994
, “
Effects of Lubricant Compressibility on the Film Thickness in EHL Line and Circular Contacts
,”
Wear
,
173
(
1–2
), pp.
151
165
.
You do not currently have access to this content.