Abstract

Influence of tungsten disulfide particles (WS2) on the friction and wear behavior of Mg-AZ91 forms the objective of this work. Friction stir processing (FSP) has been used to fabricate FSP AZ91/WS2 composite with various FSP passes. The microstructures were studied using a optical microscope (OM), electron backscatter diffraction (EBSD), and scanning electron microscope (SEM). Hardness is measured using Vickers’s microhardness tester. The impact of WS2 on the friction and wear resistance of Mg-AZ91 were evaluated using a pin-on-disc apparatus under dry sliding conditions. The microstructure showed the grain refinement of FSP AZ91/WS2 composite, due to severe plastic deformation and dynamic recrystallization. An increase in the FSP passes has transformed the grain size from micron- to nano-level. The hardness of FSP AZ91/WS2 composite is increased to 122 HV, from 62.2 HV0.3 of Mg-AZ91. The improvement in the hardness is due to the reinforcement of WS2 and grain refinement. A significant improvement in the friction and wear resistance was achieved for Mg-AZ91 composites in contrast to FSP AZ91 and AZ91. SEM micro-images showed the transfer of wear mechanism from severe adhesive wear to mild adhesive wear.

References

1.
Sivaneshprabhu
,
M.
,
Elayaperumal
,
A.
, and
Arulvel
,
S.
,
2020
, “
Development of Multi-Pass Processed AA6082/SiCp Surface Composite Using Friction Stir Processing and Its Mechanical and Tribology Characterization
,”
Surf. Coat. Technol.
,
394
, p.
125900
.
2.
Gupta
,
M.
, and
Wong
,
W. L. E.
,
2015
, “
Magnesium-Based Nanocomposites: Lightweight Materials of the Future
,”
Mater. Charact.
,
105
, pp.
30
46
.
3.
Kulekci
,
M. K.
,
2008
, “
Magnesium and Its Alloys Applications in Automotive Industry
,”
Int. J. Adv. Manuf. Technol.
,
39
(
9
), pp.
851
865
.
4.
Tan
,
J.
, and
Ramakrishna
,
S.
,
2021
, “
Applications of Magnesium and Its Alloys: A Review
,”
Appl. Sci.
,
11
(
15
), p.
6861
.
5.
Kumar
,
S.
,
Kumar
,
D.
,
Jain
,
J.
, and
Hirwani
,
J. K.
,
2016
, “
Influence of Load, Sliding Speed, and Microstructure on Wear Response of AZ91 Mg Alloy
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
230
(
12
), pp.
1462
1469
.
6.
Asgari
,
H.
,
Szpunar
,
J. A.
, and
Odeshi
,
A. G.
, “
Texture Evolution and Dynamic Mechanical Behavior of Cast AZ Magnesium Alloys Under High Strain Rate Compressive Loading
,”
Mater. Des.
,
61
, pp.
26
34
.
7.
Ma
,
Z. Y.
,
2008
, “
Friction Stir Processing Technology: A Review
,”
Metall. Mater. Trans. A
,
39
(
3
), pp.
642
658
.
8.
Grewal
,
H. S.
,
Arora
,
H. S.
,
Singh
,
H.
,
Agrawal
,
A.
, and
Mukherjee
,
S.
,
2014
, “
Improving Erosion Resistance of Hydroturbine Steel Using Friction Stir Processing
,”
ASME J. Tribol.
,
136
(
4
), p.
041102
.
9.
Mishra
,
R. S.
,
Ma
,
Z. Y.
, and
Charit
,
I.
,
2003
, “
Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite
,”
Mater. Sci. Eng. A
,
341
(
1–2
), pp.
307
310
.
10.
Idris
,
J.
,
Tan
,
J. C.
, and
Chang
,
C. W.
,
2001
, “
The Development of Advanced Materials—High Performance Properties of Composite for Automotive and Aerospace Applications
,”
J. Sci. Technol.
,
9
(
2
), pp.
149
158
.
11.
Sahoo
,
B. N.
, and
Panigrahi
,
S. K.
,
2016
, “
Synthesis, Characterization and Mechanical Properties of In-situ (TiC-TiB2) Reinforced Magnesium Matrix Composite
,”
Mater. Des.
,
109
, pp.
300
313
.
12.
Vaira Vignesh
,
R.
,
Padmanaban
,
R.
,
Govindaraju
,
M.
, and
Suganya Priyadharshini
,
G.
,
2019
, “
Investigations on the Corrosion Behaviour and Biocompatibility of Magnesium Alloy Surface Composites AZ91D-ZrO2 Fabricated by Friction Stir Processing
,”
Trans. Inst. Met. Finish.
,
97
(
5
), pp.
261
270
.
13.
Arokiasamy
,
S.
, and
Ronald
,
B. A.
,
2017
, “
Experimental Investigations on the Enhancement of Mechanical Properties of Magnesium-Based Hybrid Metal Matrix Composites Through Friction Stir Processing
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1
), pp.
493
503
.
14.
Abbasi
,
M.
,
Bagheri
,
B.
,
Dadaei
,
M.
,
Omidvar
,
H. R.
, and
Rezaei
,
M.
,
2015
, “
The Effect of FSP on Mechanical, Tribological, and Corrosion Behavior of Composite Layer Developed on Magnesium AZ91 Alloy Surface
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9
), pp.
2051
2058
.
15.
Ahmadkhaniha
,
D.
,
Heydarzadeh Sohi
,
M.
,
Salehi
,
A.
, and
Tahavvori
,
R.
,
2016
, “
Formations of AZ91/Al2O3 Nano-composite Layer by Friction Stir Processing
,”
J. Magnes. Alloy.
,
4
(
4
), pp.
314
318
.
16.
Simar
,
A.
,
Mertens
,
A.
,
Ryelandt
,
S.
,
Delannay
,
F.
, and
Brassart
,
L.
,
2018
, “
Mean-Field Model Analysis of Deformation and Damage in Friction Stir Processed Mg-C Composites
,”
Mater. Sci. Eng. A.
,
723
, pp.
324
333
.
17.
Bagheri
,
B.
,
Abdollahzadeh
,
A.
,
Sharifi
,
F.
, and
Abbasi
,
M.
,
2021
, “
The Role of Vibration and Pass Number on Microstructure and Mechanical Properties of AZ91/SiC Composite Layer During Friction Stir Processing
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
236
(
5
), pp.
2312
2326
.
18.
Wang
,
Q. D.
,
Zhao
,
Y.
, and
Li
,
Q. H.
,
2007
, “
Effects of CaCO3 Modificator on Microstructure and Mechanical Properties of Cast AZ91 Magnesium Alloy
,”
Mater. Sci. Forum.
,
546
, pp.
155
158
.
19.
Khan
,
M. W.
,
Elayaperumal
,
A.
,
Prabhu
,
M. S.
, and
Arulvel
,
S.
,
2022
, “
Effect of Compaction Pressure on the Physical, Mechanical, and Tribological Behavior of Compacted Crab Shell Particles Prepared Using Uniaxial Compaction Route
,”
J. Mater. Eng. Perform.
,
31
(
5
), pp.
3493
3507
.
20.
Bhadouria
,
N.
,
Kumar
,
P.
,
Thakur
,
L.
,
Dixit
,
S.
, and
Arora
,
N.
,
2017
, “
A Study on Micro-hardness and Tribological Behaviour of Nano-WC–Co–Cr/Multi-walled Carbon Nanotubes Reinforced AZ91D Magnesium Matrix Surface Composites
,”
Trans. Indian Inst. Met.
,
70
(
9
), pp.
2477
2483
.
21.
Patle
,
H.
,
Ratna Sunil
,
B.
, and
Dumpala
,
R.
,
2020
, “
Sliding Wear Behavior of AZ91/B4C Surface Composites Produced by Friction Stir Processing
,”
Mater. Res. Express.
,
7
(
1
), pp.
22
26
.
22.
Girish
,
B. M.
,
Satish
,
B. M.
,
Sarapure
,
S.
, and
Basawaraj
,
2016
, “
Optimization of Wear Behavior of Magnesium Alloy AZ91 Hybrid Composites Using Taguchi Experimental Design
,”
Metall. Mater. Trans. A
,
47
(
6
), pp.
3193
3200
.
23.
r
Azizieh
,
M.
,
Kokabi
,
A. H.
, and
Abachi
,
P.
,
2011
, “
Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/Al2O3 Nanocomposites Fabricated by Friction Stir Processing
,”
Mater. Des.
,
32
(
4
), pp.
2034
2041
.
24.
Dadashpour
,
M.
,
Yeşildal
,
R.
,
Mostafapour
,
A.
, and
Rezazade
,
V.
,
2016
, “
Effect of Heat Treatment and Number of Passes on the Microstructure and Mechanical Properties of Friction Stir Processed AZ91C Magnesium Alloy
,”
J. Mech. Sci. Technol.
,
30
(
2
), pp.
667
672
.
25.
Chai
,
F.
,
Yan
,
F.
,
Wang
,
W.
,
Lu
,
Q.
, and
Fang
,
X.
,
2018
, “
Microstructures and Mechanical Properties of AZ91 Alloys Prepared by Multi-pass Friction Stir Processing
,”
J. Mater. Res.
,
33
(
12
), pp.
1789
1796
.
26.
Asadi
,
P.
,
Besharati Givi
,
M. K.
, and
Faraji
,
G.
,
2010
, “
Producing Ultrafine-Grained AZ91 From as-Cast AZ91 by FSP
,”
Mater. Manuf. Process.
,
25
(
11
), pp.
1219
1226
.
27.
Faraji
,
G.
,
Dastani
,
O.
, and
Akbari Mousavi
,
S. A. A.
,
2011
, “
Microstructures and Mechanical Properties of Al2O3/AZ91 Surface Nanocomposite Layer Produced by Friction Stir Processing
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
225
(
8
), pp.
1331
1345
.
28.
Iwaszko
,
J.
,
Kudła
,
K.
, and
Fila
,
K.
,
2016
, “
Friction Stir Processing of the AZ91 Magnesium Alloy With SiC Particles
,”
Arch. Mater. Sci. Eng.
,
77
(
2
), pp.
85
92
.
29.
Madhusudhan Reddy
,
G.
,
Sambasiva Rao
,
A.
, and
Srinivasa Rao
,
K.
,
2013
, “
Friction Stir Processing for Enhancement of Wear Resistance of ZM21 Magnesium Alloy
,”
Trans. Indian Inst. Met.
,
66
(
1
), pp.
13
24
.
30.
Yang
,
M.
,
Xu
,
C.
,
Wu
,
C.
,
Lin
,
K. C.
,
Chao
,
Y. J.
, and
An
,
L.
,
2010
, “
Fabrication of AA6061/Al2O3 Nano Ceramic Particle Reinforced Composite Coating by Using Friction Stir Processing
,”
J. Mater. Sci.
,
45
(
16
), pp.
4431
4438
.
31.
Zhou
,
M.
,
Zeng
,
Z.
,
Cheng
,
C.
,
Morisada
,
Y.
,
Shi
,
Q.
,
Wang
,
J. Y.
, and
Fujii
,
H.
,
2022
, “
Effect of the Processing Route on the Microstructure and Mechanical Behavior of Superlight Mg-9Li-1 Zn Alloy Via Friction Stir Processing
,”
J. Magnes. Alloy
, Article in press.
32.
Zhou
,
M.
,
Morisada
,
Y.
,
Fujii
,
H.
, and
Wang
,
J. Y.
,
2022
, “
Pronounced Low-Temperature Superplasticity of Friction Stir Processed Mg–9Li–1Zn Alloy
,”
Mater. Sci. Eng: A
,
780
, p.
139071
.
33.
Liu
,
Q.
,
Ma
,
Q. X.
,
Chen
,
G. Q.
,
Cao
,
X.
,
Zhang
,
S.
,
Pan
,
J. L.
, and
Shi
,
Q. Y.
,
2018
, “
Enhanced Corrosion Resistance of AZ91 Magnesium Alloy Through Refinement and Homogenization of Surface Microstructure by Friction Stir Processing
,”
Corros. Sci.
,
138
, pp.
284
296
.
34.
Long
,
F.
,
Chen
,
G.
,
Zhou
,
M.
,
Shi
,
Q.
, and
Liu
,
Q.
,
2021
, “
Simultaneous Enhancement of Mechanical Properties and Corrosion Resistance of As-Cast Mg-5Zn via Microstructural Modification by Friction Stir Processing
,”
J. Magnes. Alloy.
, Article in press.
You do not currently have access to this content.