Abstract

Deterministic contact modeling based on half-space theories has satisfied a wide range of applications. However, the half-space theories themselves do not involve shape effects of roughness on Green’s functions/influence coefficients; in deterministic rough-surface contact analyses, the roughness is considered in gap function. This approach can be called the “roughness simplification.” One needs to answer two questions about the validity of the roughness simplification: How appropriate is the roughness simplification in modeling rough-surface contacts? How accurately can the commonly included contact-plasticity behavior be captured under the roughness simplification? This work utilized a double-scale representation of an asperity—a microscopic deformable asperity stacked on a deformable half-space, to obtain their combined contact responses in both elastic and plastic regimes. The deformation and contact behaviors of asperities thus configured were obtained with finite element analysis (FEA) and rough-surface half-space contact solvers. Three stages of asperity contact were discovered: the Hertzian stage, the single-region elastoplastic stage, and the two-region elastoplastic stage where the surrounding base material also takes part in the contact. The comparisons of contact deformation and pressure results from both the finite element analysis and half-space contact solvers support the validity of the half-space theories with the roughness simplification for various ellipsoid-shape asperities with circular-bases in both elastic and elastoplastic rough-surface asperity modeling. The research also reveals that when significant plastic deformations occur, asperities with different aspect ratios can bear different maximum elastoplastic contact pressures.

References

1.
Johnson
,
K. L.
,
1996
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
2.
Hertz
,
H.
,
1882
, “
Ueber die Berührung Fester Elastischer Körper
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
3.
Abbott
,
E. J.
, and
Firestone
,
F. A.
,
1933
, “
Specifying Surface Quality—A Method Based on Accurate Measurement and Comparison
,”
Mech. Eng.
,
55
(
9
), p.
569
.
4.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surface
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
295
(
1442
), pp.
300
319
.
5.
Hardy
,
C.
,
Baronet
,
C. N.
, and
Tordion
,
G. V.
,
1971
, “
The Elastic-Plastic Indentation of a Half-Space by a Rigid Sphere
,”
Int. J. Numer. Methods Eng.
,
3
(
4
), pp.
451
462
.
6.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
7.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
,
1993
, “
Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by a Rigid Sphere
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
829
841
.
8.
Bhushan
,
B.
,
1996
, “
Contact Mechanics of Rough Surfaces in Tribology: Single Asperity Contact
,”
ASME Appl. Mech. Rev.
,
49
(
5
), pp.
275
298
.
9.
Bhushan
,
B.
,
1998
, “
Contact Mechanics of Rough Surfaces in Tribology: Multiple Asperity Contact
,”
Tribol. Lett.
,
4
(
1
), pp.
1
35
.
10.
Zhao
,
Y.
,
Maletta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
11.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
12.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
13.
Jamari
,
J.
, and
Schipper
,
D. J.
,
2006
, “
Experimental Investigation of Fully Plastic Contact of a Sphere Against a Hard Flat,”
ASME J. Tribol.
,
128
(
2
), pp.
230
235
.
14.
Ghaednia
,
H.
,
Wang
,
X.
,
Saha
,
S.
,
Xu
,
Y.
,
Sharma
,
A.
, and
Jackson
,
R. L.
,
2017
, “
A Review of Elastic–Plastic Contact Mechanics
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060804
.
15.
Ghaednia
,
H.
,
Pope
,
S. A.
,
Jackson
,
R. L.
, and
Marghitu
,
D. B.
,
2016
, “
A Comprehensive Study of the Elasto-Plastic Contact of a Sphere and a Flat
,”
Tribol. Intl.
,
93
(
A
), pp.
78
90
.
16.
Jackson
,
R. L.
,
Ghaednia
,
H.
, and
Pope
,
S. A.
,
2015
, “
A Solution of Rigid–Perfectly Plastic Deep Spherical Indentation Based on Slip-Line Theory
,”
Tribol. Lett.
,
58
(
3
), p.
47
.
17.
Zhao
,
T.
, and
Feng
,
Y. T.
,
2018
, “
Extended Greenwood-Williamson Models for Rough Spheres
,”
ASME J. Appl. Mech.
,
85
(
10
), p.
101007
.
18.
Reinert
,
L.
,
Green
,
I.
,
Gimmler
,
S.
,
Mücklich
,
F.
, and
Suárez
,
S.
,
2018
, “
Tribological Behavior of Self-Lubricating Carbon Nanoparticle Reinforced Metal Matrix Composites
,”
Wear
,
408–409
, pp.
72
85
.
19.
You
,
S.
, and
Tang
,
J.
,
2022
, “
A New Model for Sphere Asperity Contact Analysis Considering Strain Hardening of Materials
,”
Tribol. Lett.
,
70
(
4
), p.
130
.
20.
Jackson
,
R. L.
, and
Streator
,
J. L.
,
2006
, “
A Multiscale Model for Contact Between Rough Surfaces
,”
Wear
,
261
(
11–12
), pp.
1337
1347
.
21.
Ciavarella
,
M.
,
Greenwood
,
J.
, and
Paggi
,
M.
,
2008
, “
Inclusion of ‘Interaction’ in the Greenwood and Williamson Contact Theory
,”
Wear
,
265
(
5–6
), pp.
729
734
.
22.
Chandrasekar
,
S.
,
Eriten
,
M.
, and
Polycarpou
,
A. A.
,
2013
, “
An Improved Model of Asperity Interaction in Normal Contact of Rough Surfaces
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011025
.
23.
Kaneta
,
M.
,
Sakai
,
T.
, and
Nishikawa
,
H.
,
1992
, “
Optical Interferometric Observations of the Effects of a Bump on Point Contact EHL
,”
ASME J. Tribol.
,
114
(
4
), pp.
779
784
.
24.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
1994
, “
Numerical Simulation of a Transferee Ridge in a Circular EHL Contact Under Rolling/Sliding
,”
ASME J. Tribol.
,
116
(
4
), pp.
751
761
.
25.
Ren
,
N.
,
Zhu
,
D.
, and
Wang
,
Q.
,
2011
, “
Three-Dimensional Plasto-Elastohydrodynamic Lubrication (PEHL) for Surfaces With Irregularities
,”
ASME J. Tribol.
,
133
(
3
), p.
031502
.
26.
Huang
,
J.
,
Zhang
,
X.
,
Sun
,
C.
, and
Chen
,
J.
,
2023
, “
Experimental and Finite Element Analysis of Plastic Domain Evolution of Wavy Surfaces During Contact
,”
Tribol. Lett.
,
71
(
1
), p.
6
.
27.
Liu
,
G.
,
Wang
,
Q.
, and
Lin
,
C.
,
1999
, “
A Survey of Current Models for Simulating the Contact Between Rough Surfaces
,”
Tribol. Trans.
,
42
(
3
), pp.
581
591
.
28.
Pei
,
L.
,
Hyun
,
S.
,
Molinari
,
J. F.
, and
Robbins
,
M. O.
,
2005
, “
Finite Element Modeling of Elasto-Plastic Contact Between Rough Surfaces
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2385
2409
.
29.
Xu
,
Y.
, and
Jackson
,
R. L.
,
2019
, “
Boundary Element Method (BEM) Applied to the Rough Surface Contact vs. BEM In Computational Mechanics
,”
Friction
,
7
(
4
), pp.
359
371
.
30.
Eid
,
H.
, and
Adams
,
G. G.
,
2007
, “
An Elastic–Plastic Finite Element Analysis of Interacting Asperities in Contact With a Rigid Flat
,”
J. Phys. D: Appl. Phys.
,
40
(
23
), pp.
7432
7439
.
31.
Zhu
,
D.
, and
Wang
,
Q.
,
2011
, “
Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect
,”
ASME J. Tribol.
,
133
(
4
), p.
041001
.
32.
Wang
,
Q.
,
Sun
,
L.
,
Zhang
,
X.
,
Liu
,
S.
, and
Zhu
,
D.
,
2020
, “
FFT-Based Methods for Computational Contact Mechanics
,”
Front. Mech. Eng.
,
6
, p.
61
.
33.
Brandt
,
A.
, and
Lubrecht
,
A. A.
,
1990
, “
Multilevel Matrix Multiplication and Fast Solution of Integral-Equations
,”
J. Comput. Phys.
,
90
(
2
), pp.
348
370
.
34.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
,
1991
, “
A Fast Solution of the Dry Contact Problem and the Associated Sub-Surface Stress Field, Using Multilevel Techniques
,”
ASME J. Tribol.
,
113
(
1
), pp.
128
133
.
35.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multi-level Methods in Lubrication
,
Elsevier Science
,
New York
.
36.
Schapery
,
R. A.
,
1978
, “
Analysis of Rubber Friction by the Fast Fourier Transform
,”
Tire Sci. Technol.
,
6
(
2
), pp.
89
113
.
37.
Ju
,
Y.
, and
Farris
,
T. N.
,
1996
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
,
118
(
2
), pp.
320
328
.
38.
Stanley
,
H.
, and
Kato
,
T.
,
1997
, “
An FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol.
,
119
(
3
), pp.
481
485
.
39.
Ai
,
X.
, and
Sawamiphakdi
,
K.
,
1999
, “
Solving Elastic Contact Between Rough Surfaces as an Unconstrained Strain Energy Minimization by Using CGM And FFT Techniques
,”
ASME J. Tribol.
,
121
(
4
), pp.
639
647
.
40.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
Fast Methods for Solving Rough Contact Problems: A Comparative Study
,”
ASME J. Tribol.
,
122
(
1
), pp.
36
41
.
41.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
30
35
.
42.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
1999
, “
A New Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi Summation and Conjugate Gradient Techniques
,”
Wear
,
231
(
2
), pp.
206
219
.
43.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
44.
Liu
,
S.
, and
Wang
,
Q.
,
2000
, “
A Three-Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces
,”
ASME J. Tribol.
,
123
(
1
), pp.
17
26
.
45.
Zhang
,
X.
,
Wang
,
Q.
,
Harrison
,
K. L.
,
Roberts
,
S. A.
, and
Harris
,
S. J.
,
2020
, “
Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries
,”
Cell Rep. Phys. Sci.
,
1
(
2
), p.
100012
.
46.
Wang
,
Q.
, and
Zhu
,
D.
,
2019
,
Interfacial Mechanics Theories and Methods for Contact and Lubrication
,
CRC Press
,
Boca Raton, FL
.
47.
Liu
,
S.
, and
Wang
,
Q.
,
2005
, “
Elastic Fields Due to Eigenstrains in a Half-Space
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
871
878
.
48.
Liu
,
S.
,
Jin
,
X.
,
Wang
,
Z.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
Analytical Solution for Elastic Fields Caused by Eigenstrains in A Half-Space and Numerical Implementation Based on FFT
,”
Int. J. Plast.
,
35
(
11-12
), pp.
135
154
.
49.
Nelias
,
D.
,
Antaluca
,
E.
,
Boucly
,
V.
, and
Cretu
,
S.
,
2007
, “
A Three-Dimensional Semianalytical Model for Elastic-Plastic Sliding Contacts
,”
ASME J. Tribol.
,
129
(
4
), pp.
761
771
.
50.
Chen
,
W. W.
,
Wang
,
Q.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
,
2008
, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and Sliding
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021021
.
51.
Ren
,
N.
,
Zhu
,
D.
,
Chen
,
W. W.
, and
Wang
,
Q.
,
2010
, “
Plasto-Elastohydrodynamic Lubrication (PEHL) in Point Contacts
,”
ASME J. Tribol.
,
132
(
3
), p.
031501
.
52.
Wang
,
Z.
,
Jin
,
X.
,
Zhou
,
Q.
,
Ai
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
An Efficient Numerical Method With a Parallel Computational Strategy for Solving Arbitrarily Shaped Inclusions in Elastoplastic Contact Problems
,”
ASME J. Tribol.
,
135
(
3
), p.
031401
.
53.
Jeng Y.
,
W.
,
2003
, “
An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation
,”
ASME J. Tribol.
,
125
(
2
), pp.
232
240
.
54.
Liu
,
S.
,
Wang
,
Q.
,
Chung
,
Y. W.
, and
Berkebile
,
S.
,
2021
, “
Lubrication-Contact Interface Conditions and Novel Mixed/Boundary Lubrication Modeling Methodology
,”
Tribol. Lett.
,
69
(
4
), p.
164
.
You do not currently have access to this content.