Abstract

The viscosity of ferrofluid has a vital role in liquid sealing of the hard disk drives, biomedical applications as drug delivery, hyperthermia, and magnetic resonance imaging. The theoretical expressions for ferrofluid viscosity and its limitation are presented in detail in this article. A qualitative comparison of the theoretical and experimental viscosity results is also shown. In the absence of a magnetic field, the viscosity of ferrofluid depends on the volume concentration of magnetic nanoparticles, including surfactant layers. However, the viscosity of ferrofluid due to stationary magnetic field depends on the angle between the applied magnetic field and vorticity in the flow. If this angle is 90 deg, then there is a maximum increase in the viscosity. When field frequency matches with the relaxation time, known as resonance condition, then there is no impact of an alternating magnetic field in the viscosity of ferrofluid. If the frequency of an alternating magnetic field is less than resonance frequency, then an alternating magnetic field increases the viscosity of ferrofluid. For diluted ferrofluid, present theoretical results of viscosity have good agreement with the experimental data.

References

1.
Rosensweig
,
R. E.
,
1985
,
Ferrohydrodynamics
,
Cambridge University Press
,
Cambridge
.
2.
Blums
,
E.
,
Cebers
,
A.
, and
Maiorov
,
M.
,
1997
,
Magnetic Fluids
,
Walter de Gruyter
.
3.
Odenbach
,
S.
, and
Thurm
,
S.
,
2002
,
Magnetoviscous Effects in Ferrofluids
,
Springer-Verlag
,
Berlin/Heidelberg
, pp.
185
201
.
4.
Berkovsky
,
B. M.
,
Medvedev
,
V. F.
, and
Krakov
,
M. S.
,
1993
,
Fluids-Engineering Applications
,
Oxford University Press
,
Oxford
.
5.
Berkovsky
,
B. M.
, and
Bastovoy
,
V. G.
,
1996
,
Magnetic Fluids: Engineering Applications
,
Begell House
,
New York
.
6.
Charles
,
S. W.
,
2002
,
The Preparation of Magnetic Fluids
,
Springer
,
Berlin, Heidelberg
, pp.
3
18
.
7.
Kikuchi
,
T.
,
Kasuya
,
R.
,
Endo
,
S.
,
Nakamura
,
A.
,
Takai
,
T.
,
Metzler-Nolte
,
N.
,
Tohji
,
K.
, and
Balachandran
,
J.
,
2011
, “
Preparation of Magnetite Aqueous Dispersion for Magnetic Fluid Hyperthermia
,”
J. Magn. Magn. Mater.
,
323
(
10
), pp.
1216
1222
.
8.
López-Pérez
,
J. A.
,
López-Quintela
,
M. A.
,
Mira
,
J.
, and
Rivas
,
J.
,
1997
, “
Preparation of Magnetic Fluids With Particles Obtained in Microemulsions
,”
IEEE Trans. Magn.
,
33
(
5 PART 3
), pp.
4359
4362
.
9.
Imran
,
M.
,
Shaik
,
A. H.
,
Ansari
,
A. R.
,
Aziz
,
A.
,
Hussain
,
S.
,
Fadil Abouatiaa
,
A. F.
,
Khan
,
A.
, and
Chandan
,
M. R.
,
2018
, “
Synthesis of Highly Stable γ-Fe2O3 Ferrofluid Dispersed in Liquid Paraffin, Motor Oil and Sunflower Oil for Heat Transfer Applications
,”
RSC Adv.
,
8
(
25
), pp.
13970
13975
.
10.
Van Silfhout
,
A. M.
,
Engelkamp
,
H.
, and
Erné
,
B. H.
,
2020
, “
Colloidal Stability of Aqueous Ferrofluids at 10 T
,”
J. Phys. Chem. Lett.
,
11
(
15
), pp.
5908
5912
.
11.
Lalas
,
D. P.
, and
Carmi
,
S.
,
1971
, “
Thermoconvective Stability of Ferrofluids
,”
Phys. Fluids
,
14
(
2
), pp.
436
438
.
12.
Tari
,
A.
,
Chantrell
,
R. W.
,
Charles
,
S. W.
, and
Popplewell
,
J.
,
1979
, “
The Magnetic Properties and Stability of a Ferrofluid Containing Fe3O4 Particles
,”
Phys. B + C
,
97
(
1
), pp.
57
64
.
13.
Kaloni
,
P. N.
, and
Mahajan
,
A.
,
2010
, “
Stability and Uniqueness of Ferrofluids
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
1350
1356
.
14.
Zelazo
,
R. E.
, and
Melcher
,
J. R.
,
1969
, “
Dynamics and Stability of Ferrofluids: Surface Interactions
,”
J. Fluid Mech.
,
39
(
1
), pp.
1
24
.
15.
Bolshakova
,
I.
,
Bolshakov
,
M.
,
Zaichenko
,
A.
, and
Egorov
,
A.
,
2005
, “The Investigation of the Magnetic Fluid Stability Using the Devices With Magnetic Field Microsensors,”
J. Magn. Magn. Mater.
,
289
, pp.
108
110
.
16.
Bossis
,
G.
,
Volkova
,
O.
,
Lacis
,
S.
, and
Meunier
,
A.
,
2002
,
Magnetorheology: Fluids, Structures and Rheology
,
Springer
,
Berlin, Heidelberg
, pp.
202
230
.
17.
Zubarev
,
A.
,
2002
,
Statistical Physics of Non-Dilute Ferrofluids
,
Springer
,
Berlin, Heidelberg
, pp.
143
161
.
18.
Morozov
,
K. I.
, and
Shliomis
,
M. I.
,
2002
,
Magnetic Fluid as an Assembly of Flexible Chains
,
Springer
,
Berlin, Heidelberg
, pp.
162
184
.
19.
Zubarev
,
A. Y.
, and
Iskakova
,
L. Y.
,
2003
, “
On the Theory of Structural Transformations in Magnetic Fluids
,”
Colloid J. Russ. Acad. Sci. Kolloidn. Zhurnal
,
65
(
6
), pp.
703
710
.
20.
Ivanov
,
A. O.
, and
Kantorovich
,
S. S.
,
2003
, “
Structure of Chain Aggregates in Ferrocolloids
,”
Colloid J. Russ. Acad. Sci. Kolloidn. Zhurnal
,
65
(
2
), pp.
166
176
.
21.
Wiedenmann
,
A.
,
2002
,
Magnetic and Crystalline Nanostructures in Ferrofluids as Probed by Small Angle Neutron Scattering
,
Springer
,
Berlin, Heidelberg
, pp.
33
58
.
22.
Gazeau
,
F.
,
Dubois
,
E.
,
Bacri
,
J. C.
,
Boué
,
F.
,
Cebers
,
A.
, and
Perzynski
,
R.
,
2002
, “
Anisotropy of the Structure Factor of Magnetic Fluids Under a Field Probed by Small-Angle Neutron Scattering
,”
Phys. Rev. E
,
65
(
3
), p.
031403
.
23.
Sousa
,
M. H.
,
Hasmonay
,
E.
,
Depeyrot
,
J.
,
Tourinho
,
F. A.
,
Bacri
,
J. C.
,
Dubois
,
E.
,
Perzynski
,
R.
, and
Raikher
,
Y. L.
,
2002
, “
NiFe2O4 Nanoparticles in Ferrofluids: Evidence of Spin Disorder in the Surface Layer
,”
J. Magn. Magn. Mater.
,
242–245
(
PART I
), pp.
572
574
.
24.
Raikher
,
Y. L.
,
Stepanov
,
V. I.
,
Bacri
,
J. C.
, and
Perzynski
,
R.
,
2005
, “Orientational Dynamics in Magnetic Fluids Under Strong Coupling of External and Internal Relaxations,”
J. Magn. Magn. Mater.
,
289
, pp.
222
225
.
25.
Raikher
,
Y. L.
,
Stepanov
,
V. I.
,
Bacri
,
J. C.
, and
Perzynski
,
R.
,
2002
, “
Orientational Dynamics of Ferrofluids With Finite Magnetic Anisotropy of the Particles: Relaxation of Magneto-Birefringence in Crossed Fields
,”
Phys. Rev. E
,
66
(
2
), p.
021203
.
26.
Kim
,
D. K.
,
Kan
,
D.
,
Veres
,
T.
,
Normadin
,
F.
,
Liao
,
J. K.
,
Kim
,
H. H.
,
Lee
,
S.-H.
,
Zahn
,
M.
, and
Muhammed
,
M.
,
2005
, “
Monodispersed Fe-Pt Nanoparticles for Biomedical Applications
,”
J. Appl. Phys.
,
97
(
10
), p.
10Q918
.
27.
Shen
,
F.
,
Poncet-Legrand
,
C.
,
Somers
,
S.
,
Slade
,
A.
,
Yip
,
C.
,
Duft
,
A. M.
,
Winnik
,
F. M.
, and
Chang
,
P. L.
,
2003
, “
Properties of a Novel Magnetized Alginate for Magnetic Resonance Imaging
,”
Biotechnol. Bioeng.
,
83
(
3
), pp.
282
292
.
28.
Herrera
,
A. P.
,
Barrera
,
C.
,
Zayas
,
Y.
, and
Rinaldi
,
C.
,
2010
, “
Monitoring Colloidal Stability of Polymer-Coated Magnetic Nanoparticles Using AC Susceptibility Measurements
,”
J. Colloid Interface Sci.
,
342
(
2
), pp.
540
549
.
29.
Borin
,
D. Y.
,
Korolev
,
V. V.
,
Ramazanova
,
A. G.
,
Odenbach
,
S.
,
Balmasova
,
O. V.
,
Yashkova
,
V. I.
, and
Korolev
,
D. V.
,
2016
, “
Magnetoviscous Effect in Ferrofluids With Different Dispersion Media
,”
J. Magn. Magn. Mater.
,
416
, pp.
110
116
.
30.
Meriläinen
,
A.
,
Seppälä
,
A.
,
Saari
,
K.
,
Seitsonen
,
J.
,
Ruokolainen
,
J.
,
Puisto
,
S.
,
Rostedt
,
N.
, and
Ala-Nissila
,
T.
,
2013
, “
Influence of Particle Size and Shape on Turbulent Heat Transfer Characteristics and Pressure Losses in Water-Based Nanofluids
,”
Int. J. Heat Mass Transf.
,
61
(
1
), pp.
439
448
.
31.
Jeong
,
J.
,
Li
,
C.
,
Kwon
,
Y.
,
Lee
,
J.
,
Kim
,
S. H.
, and
Yun
,
R.
,
2013
, “
Particle Shape Effect on the Viscosity and Thermal Conductivity of ZnO Nanofluids
,”
Int. J. Refrig.
,
36
(
8
), pp.
2233
2241
.
32.
Raj
,
K.
, and
Moskowitz
,
R.
,
1990
, “
Commercial Applications of Ferrofluids
,”
J. Magn. Magn. Mater.
,
85
(
1–3
), pp.
233
245
.
33.
Bailey
,
R. L.
,
1983
, “
Lesser Known Applications of Ferrofluids
,”
J. Magn. Magn. Mater.
,
39
(
1–2
), pp.
178
182
.
34.
Raj
,
K.
, and
Boulton
,
R. J.
,
1987
, “
Ferrofluids—Properties and Applications
,”
Mater. Des.
,
8
(
4
), pp.
233
236
.
35.
Odenbach
,
S.
,
2013
, “
Ferrofluids and Their Applications
,”
MRS Bull.
,
38
(
11
), pp.
921
924
.
36.
Li
,
Z.
,
Li
,
D.
,
Cui
,
H.
, and
of nanoscience
,
Y. Z.-J.
,
2019
, “Influence of the Carrier Fluid Viscosity on the Rotational and Oscillatory Rheological Properties of Ferrofluids,” ingentaconnect.com.
37.
Genc
,
S.
, and
Derin
,
B.
,
2014
, “
Synthesis and Rheology of Ferrofluids: A Review
,”
Curr. Opin. Chem. Eng.
,
3
, pp.
118
124
.
38.
Huang
,
W.
, and
Wang
,
X.
,
2016
, “
Ferrofluids Lubrication: A Status Report
,”
Lubr. Sci.
,
28
(
1
), pp.
3
26
.
39.
Sorge
,
F.
,
1987
, “
A Numerical Approach to Finite Journal Bearings Lubricated With Ferrofluid
,”
ASME J. Tribol.
,
109
(
1
), pp.
77
82
.
40.
Liao
,
S.
,
Huang
,
W.
, and
Wang
,
X.
,
2012
, “
Micro-Magnetic Field Arrayed Surface for Ferrofluids Lubrication
,”
ASME J. Tribol.
,
134
(
2
), p.
021701
.
41.
Kumar
,
A.
, and
Sharma
,
S. C.
,
2022
, “
Ferrofluid Lubrication of Optimized Spiral-Grooved Conical Hybrid Journal Bearing Using Current-Carrying Wire Model
,”
ASME J. Tribol.
,
144
(
4
), p.
041801
.
42.
Tipei
,
N.
,
1981
, “
Theory of Lubrication With Ferrofluids: Application to Short Bearings
,”
ASME J. Tribol.
,
104
(
4
), pp.
510
515
.
43.
Tipei
,
N.
,
1983
, “
Overall Characteristics of Bearings Lubricated with Ferrofluids
,”
ASME J. Tribol.
,
105
(
3
), pp.
466
475
.
44.
Andò
,
B.
,
Baglio
,
S.
, and
Beninato
,
A.
,
2010
, “Magnetic Fluids for Bio-Medical Application,”
Lecture Notes in Electrical Engineering
, S. C. Mukhopadhyay and A. Lay-Ekuakille, eds.,
Springer
,
Berlin/Heidelberg
, pp.
16
28
.
45.
Asmatulu
,
R.
, and
Fakhari
,
A.
,
2008
, “
Neutral PH Ferrofluid Fabrication for Biomedical Applications
,”
ASME J. Med. Devices
,
2
(
2
), p.
027541
.
46.
Bhandari
,
A.
, and
Kuchhal
,
P.
,
2019
, “
The Concept of High Dielectric Material for the Treatment of Liver Cancer Through Microwave Heating
,”
J. Med. Eng. Technol.
,
43
(
3
), pp.
165
172
.
47.
Torres-Díaz
,
I.
, and
Rinaldi
,
C.
,
2014
, “
Recent Progress in Ferrofluids Research: Novel Applications of Magnetically Controllable and Tunable Fluids
,”
Soft Matter
,
10
(
43
), pp.
8584
8602
.
48.
Zhang
,
X.
,
Sun
,
L.
,
Yu
,
Y.
, and
Zhao
,
Y.
,
2019
, “
Flexible Ferrofluids: Design and Applications
,”
Adv. Mater.
,
31
(
51
), p.
1903497
.
49.
Oldenburg
,
C. M.
,
Borglin
,
S. E.
, and
Moridis
,
G. J.
,
2000
, “
Numerical Simulation of Ferrofluid Flow for Subsurface Environmental Engineering Applications
,”
Transp. Porous Media
,
38
(
3
), pp.
319
344
.
50.
Mirkhani
,
N.
,
Christiansen
,
M. G.
, and
Schuerle
,
S.
,
2020
, “
Living, Self-Replicating Ferrofluids for Fluidic Transport
,”
Adv. Funct. Mater.
,
30
(
40
), p.
2003912
.
51.
Kole
,
M.
, and
Khandekar
,
S.
,
2021
, “
Engineering Applications of Ferrofluids: A Review
,”
J. Magn. Magn. Mater.
,
537
, p.
168222
.
52.
Andhariya
,
N.
,
Chudasama
,
B.
,
Patel
,
R.
,
Upadhyay
,
R. V.
, and
Mehta
,
R. V.
,
2008
, “
Field Induced Rotational Viscosity of Ferrofluid: Effect of Capillary Size and Magnetic Field Direction
,”
J. Colloid Interface Sci.
,
323
(
1
), pp.
153
157
.
53.
Thurm
,
S.
, and
Odenbach
,
S.
,
2003
, “
Particle Size Distribution as Key Parameter for the Flow Behavior of Ferrofluids
,”
Phys. Fluids
,
15
(
6
), p.
1658
.
54.
Odenbach
,
S.
,
2000
, “
Magnetoviscous Effects in Ferrofluids
,”
Appl. Rheol.
,
10
(
4
), pp.
178
184
.
55.
Bhandari
,
A.
,
2022
, “
Effect of the Diameter of Magnetic Core and Surfactant Thickness on the Viscosity of Ferrofluid
,”
J. Magn. Magn. Mater.
,
548
, p.
168975
.
56.
Shliomis
,
M. I.
,
1972
, “
Effective Viscosity of Magnetic Suspensions
,”
Zh. Eksp. Teor. Fiz
,
34
(
6
), pp.
1291
1294
.
57.
Bacri
,
J. C.
,
Perzynski
,
R.
,
Shliomis
,
M. I.
, and
Burde
,
G. I.
,
1995
, “
Negative-Viscosity Effect in a Magnetic Fluid
,”
Phys. Rev. Lett.
,
75
(
11
), pp.
2128
2131
.
58.
Shliomis
,
M. I.
, and
Morozov
,
K. I.
,
1994
, “
Negative Viscosity of Ferrofluid Under Alternating Magnetic Field
,”
Phys. Fluids
,
6
(
8
), pp.
2855
2861
.
59.
Finlayson
,
B. A.
,
2013
, “
Spin-Up of Ferrofluids: The Impact of the Spin Viscosity and the Langevin Function
,”
Phys. Fluids
,
25
(
7
), p.
073101
.
60.
Shliomis
,
M. I.
,
2001
, “
Ferrohydrodynamics: Testing a Third Magnetization Equation
,”
Phys. Rev. E
,
64
(
6
), p.
4
.
61.
Ambacher
,
O.
,
Odenbach
,
S.
, and
Stierstadt
,
K.
,
1992
, “
Rotational Viscosity in Ferrofluids
,”
Z. Phys. B: Condens. Matter
,
86
(
1
), pp.
29
32
.
62.
Shliomis
,
M. I.
,
2001
, “
Comment on ‘Magnetoviscosity and Relaxation in Ferrofluids
,”
Phys. Rev. E
,
64
(
6
), p.
6
.
63.
Bhandari
,
A.
,
2020
, “
Study of Magnetoviscous Effects on Ferrofluid Flow
,”
Eur. Phys. J. Plus
,
135
(
7
), pp.
1
14
.
64.
Neuringer
,
J. L.
, and
Rosensweig
,
R. E.
,
1964
, “
Ferrohydrodynamics
,”
Phys. Fluids
,
7
(
12
), pp.
1927
1937
.
65.
Torres-Diaz
,
I.
, and
Rinaldi
,
C.
,
2012
, “
Ferrofluid Flow in a Spherical Cavity Under an Imposed Uniform Rotating Magnetic Field: Spherical Spin-Up Flow
,”
Phys. Fluids
,
24
(
8
), p.
082002
.
66.
Ram
,
P.
, and
Bhandari
,
A.
,
2013
, “
Negative Viscosity Effects on Ferrofluid Flow Due to a Rotating Disk
,”
Int. J. Appl. Electromagn. Mech.
,
41
(
4
), pp.
467
478
.
67.
Chaves
,
A.
,
Torres-Diaz
,
I.
, and
Rinaldi
,
C.
,
2010
, “
Flow of Ferrofluid in an Annular Gap in a Rotating Magnetic Field
,”
Phys. Fluids
,
22
(
9
), p.
092002
.
68.
Bhandari
,
A.
,
2020
, “
Study of Ferrofluid Flow in a Rotating System Through Mathematical Modeling
,”
Math. Comput. Simul.
,
178
, pp.
290
306
.
69.
Odenbach
,
S.
,
2003
, “
Magnetic Fluids—Suspensions of Magnetic Dipoles and Their Magnetic Control
,”
J. Phys.: Condens. Matter
,
15
(
15
), pp.
S1497
S1508
.
70.
Odenbach
,
S.
,
2004
, “Recent Progress in Magnetic Fluid Research,”
J. Phys. Condens. Matter
,
16
(
32
), p.
R1135
.
71.
Rinaldi
,
C.
,
Chaves
,
A.
,
Elborai
,
S.
,
He
,
X.
, and
Zahn
,
M.
,
2005
, “
Magnetic Fluid Rheology and Flows
,”
Curr. Opin. Colloid Interface Sci.
,
10
(
3–4
), pp.
141
157
.
72.
Sheikholeslami
,
M.
, and
Shehzad
,
S. A.
,
2018
, “
Numerical Analysis of Fe3O4–H2O Nanofluid Flow in Permeable Media Under the Effect of External Magnetic Source
,”
Int. J. Heat Mass Transf.
,
118
(
32
), pp.
182
192
.
73.
Bhandari
,
A.
,
2020
, “
Water-Based Ferrofluid Flow and Heat Transfer Over a Stretchable Rotating Disk Under the Influence of an Alternating Magnetic Field
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
12
), pp.
2201
2214
.
74.
Sheikholeslami
,
M.
,
Ellahi
,
R.
, and
Vafai
,
K.
,
2018
, “
Study of Fe3O4-Water Nanofluid With Convective Heat Transfer in the Presence of Magnetic Source
,”
Alexandria Eng. J.
,
57
(
2
), pp.
565
575
.
75.
Rashid
,
M.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Ahmed
,
B.
,
2020
, “
Flow of Fe3O4 Nanofluid With Dust and Nanoparticles
,”
Appl. Nanosci.
,
10
(
8
), pp.
3115
3122
.
76.
Razaghi
,
M.
,
Abedini Esfahlani
,
A.
, and
Kargarsharifabad
,
H.
,
2021
, “
Experimental Investigation of the Fe3O4 Nanofluid Heat Transfer in a Helical Coil
,”
J. Thermophys. Heat Transf.
,
35
(
3
), pp.
589
599
.
77.
Arrhenius
,
S.
,
1917
, “
The Viscosity of Solutions
,”
Biochem. J.
,
11
(
2
), pp.
112
133
.
78.
Kunitz
,
M.
,
1926
, “
Empirical Formula for the Relation Between Viscosity of Solution and Volume of Solute
,”
J. Gen. Physiol.
,
9
(
6
), pp.
715
725
.
79.
Shimozuru
,
D.
,
1978
, “
Dynamics of Magma in a Volcanic Conduit—Special Emphasis on Viscosity of Magma With Bubbles
,”
Bull. Volcanol.
,
41
(
4
), pp.
333
340
.
80.
Meyer
,
J. P.
,
Adio
,
S. A.
,
Sharifpur
,
M.
, and
Nwosu
,
P. N.
,
2016
, “
The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models
,”
Heat Transf. Eng.
,
37
(
5
), pp.
387
421
.
81.
Mishra
,
P. C.
,
Mukherjee
,
S.
,
Nayak
,
S. K.
, and
Panda
,
A.
,
2014
, “
A Brief Review on Viscosity of Nanofluids
,”
Int. Nano Lett.
,
4
(
4
), pp.
109
120
.
82.
Rudyak
,
V. Y.
, and
Krasnolutskii
,
S. L.
,
2014
, “
Dependence of the Viscosity of Nanofluids on Nanoparticle Size and Material
,”
Phys. Lett. Sect. A Gen. At. Solid State Phys.
,
378
(
26–27
), pp.
1845
1849
.
83.
Wang
,
J.
,
Kang
,
J.
,
Zhang
,
Y.
, and
Huang
,
X.
,
2014
, “
Viscosity Monitoring and Control on Oil-Film Bearing Lubrication With Ferrofluids
,”
Tribol. Int.
,
75
, pp.
61
68
.
84.
Iqbal
,
Z.
,
Azhar
,
E.
, and
Maraj
,
E. N.
,
2021
, “
Performance of Nano-Powders SiO2 and SiC in the Flow of Engine Oil Over a Rotating Disk Influenced by Thermal Jump Conditions
,”
Phys. A: Stat. Mech. Appl.
,
565
, p.
125570
.
85.
Ibáñez
,
G.
,
López
,
A.
,
López
,
I.
,
Pantoja
,
J.
,
Moreira
,
J.
, and
Lastres
,
O.
,
2019
, “
Optimization of MHD Nanofluid Flow in a Vertical Microchannel With a Porous Medium, Nonlinear Radiation Heat Flux, Slip Flow and Convective–Radiative Boundary Conditions
,”
J. Therm. Anal. Calorim.
,
135
(
6
), pp.
3401
3420
.
86.
Khashi’ie
,
N. S.
,
Arifin
,
N. M.
,
Nazar
,
R.
,
Hafidzuddin
,
E. H.
,
Wahi
,
N.
, and
Pop
,
I.
,
2020
, “
Magnetohydrodynamics (MHD) Axisymmetric Flow and Heat Transfer of a Hybrid Nanofluid Past a Radially Permeable Stretching/Shrinking Sheet With Joule Heating
,”
Chin. J. Phys.
,
64
, pp.
251
263
.
87.
Atashafrooz
,
M.
,
Sajjadi
,
H.
, and
Delouei
,
A. A.
,
2020
, “
Interacting Influences of Lorentz Force and Bleeding on the Hydrothermal Behaviors of Nanofluid Flow in a Trapezoidal Recess With the Second Law of Thermodynamics Analysis
,”
Int. Commun. Heat Mass Transf.
,
110
, p.
104411
.
88.
Shen
,
J. P.
, and
Doi
,
M.
,
1990
, “
Effective Viscosity of Magnetic Fluids
,”
J. Phys. Soc. Japan
,
59
(
1
), pp.
111
117
.
89.
McTague
,
J. P.
,
1969
, “
Magnetoviscosity of Magnetic Colloids
,”
J. Chem. Phys.
,
51
(
50
), pp.
133
136
.
90.
Soto-Aquino
,
D.
, and
Rinaldi
,
C.
,
2010
, “
Magnetoviscosity in Dilute Ferrofluids From Rotational Brownian Dynamics Simulations
,”
Phys. Rev. E
,
82
(
4
), p.
046310
.
91.
Ganguly
,
R.
,
Sen
,
S.
, and
Puri
,
I. K.
,
2004
, “
Thermomagnetic Convection in a Square Enclosure Using a Line Dipole
,”
Phys. Fluids
,
16
(
7
), pp.
2228
2236
.
92.
Krekhov
,
A. P.
,
Shliomis
,
M. I.
, and
Kamiyama
,
S.
,
2005
, “
Ferrofluid Pipe Flow in an Oscillating Magnetic Field
,”
Phys. Fluids
,
17
(
3
), p.
033105
.
93.
Bacri
,
J. C.
,
Cebers
,
A. O.
, and
Perzynski
,
R.
,
1994
, “
Behavior of a Magnetic Fluid Microdrop in a Rotating Magnetic Field
,”
Phys. Rev. Lett.
,
72
(
17
), pp.
2705
2708
.
94.
Hall
,
W. F.
, and
Busenberg
,
S. N.
,
1969
, “
Viscosity of Magnetic Suspensions
,”
J. Chem. Phys.
,
51
(
50
), pp.
137
144
.
95.
Neveu-Prin
,
S.
,
Tourinho
,
F. A.
,
Bacri
,
J. C.
, and
Perzynski
,
R.
,
1993
, “
Magnetic Birefringence of Cobalt Ferrite Ferrofluids
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
80
(
1
), pp.
1
10
.
96.
Odenbach
,
S.
,
2003
, “Ferrofluids—Magnetically Controlled Suspensions,”
Colloids Surf. A: Physicochem. Eng. Asp.
,
217
(
1–3
), pp.
171
178
.
97.
Nanjundappa
,
C. E.
,
Shivakumara
,
I. S.
, and
Arunkumar
,
R.
,
2010
, “
Bénard-Marangoni Ferroconvection With Magnetic Field Dependent Viscosity
,”
J. Magn. Magn. Mater.
,
322
(
15
), pp.
2256
2263
.
98.
Sunil
,
D.
, and
Sharma
,
R. C.
,
2005
, “
The Effect of Magnetic Field Dependent Viscosity on Thermosolutal Convection in a Ferromagnetic Fluid Saturating a Porous Medium
,”
Transp. Porous Media
,
60
(
3
), pp.
251
274
.
99.
Ramanathan
,
A.
, and
Suresh
,
G.
,
2004
, “
Effect of Magnetic Field Dependent Viscosity and Anisotropy of Porous Medium on Ferroconvection
,”
Int. J. Eng. Sci.
,
42
(
3–4
), pp.
411
425
.
100.
Vaidyanathan
,
G.
,
Sekar
,
R.
,
Vasanthakumari
,
R.
, and
Ramanathan
,
A.
,
2002
, “
The Effect of Magnetic Field Dependent Viscosity on Ferroconvection in a Rotating Sparsely Distributed Porous Medium
,”
J. Magn. Magn. Mater.
,
250
, pp.
65
76
.
101.
Ram
,
P.
,
Bhandari
,
A.
, and
Sharma
,
K.
,
2010
, “
Effect of Magnetic Field-Dependent Viscosity on Revolving Ferrofluid
,”
J. Magn. Magn. Mater.
,
322
(
21
), pp.
3476
3480
.
102.
Rosensweig
,
R. E.
,
1996
, “
‘Negative Viscosity’ in a Magnetic Fluid
,”
Science
,
271
(
5249
), pp.
614
615
.
103.
Xie
,
H. Y.
, and
Levchenko
,
A.
,
2019
, “
Negative Viscosity and Eddy Flow of the Imbalanced Electron-Hole Liquid in Graphene
,”
Phys. Rev. B
,
99
(
4
), p.
045434
.
104.
Ram
,
P.
, and
Bhandari
,
A.
,
2013
, “
Effect of Phase Difference Between Highly Oscillating Magnetic Field and Magnetization on the Unsteady Ferrofluid Flow Due to a Rotating Disk
,”
Res. Phys.
,
3
, pp.
55
60
.
105.
Murray
,
M.
,
2008
, Emergent Viscous Phenomena in Ferrouids.
106.
Zeuner
,
A.
,
Richter
,
R.
, and
Rehberg
,
I.
,
1998
, “
Experiments on Negative and Positive Magnetoviscosity in an Alternating Magnetic Field
,”
Phys. Rev. E
,
58
(
5
), pp.
6287
6293
.
107.
Felicia
,
L. J.
, and
Philip
,
J.
,
2015
, “
Effect of Hydrophilic Silica Nanoparticles on the Magnetorheological Properties of Ferrofluids: A Study Using Opto-Magnetorheometer
,”
Langmuir
,
31
(
11
), pp.
3343
3353
.
108.
Odenbach
,
S.
, and
Störk
,
H.
,
1998
, “
Shear Dependence of Field-Induced Contributions to the Viscosity of Magnetic Fluids at Low Shear Rates
,”
J. Magn. Magn. Mater.
,
183
(
1–2
), pp.
188
194
.
109.
Chand
,
M.
,
Kumar
,
S.
,
Shankar
,
A.
,
Porwal
,
R.
, and
Pant
,
R. P.
,
2013
, “
The Size Induced Effect on Rheological Properties of Co-Ferrite Based Ferrofluid
,”
J. Non. Cryst. Solids
,
361
(
1
), pp.
38
42
.
110.
Kroger
,
M.
,
2019
, “
Ferrofluids: Magnetically Controllable Fluids and Their Applications
,”
Appl. Rheol.
,
14
(
4
), pp.
179
179
.
111.
Hosseini
,
M. S.
,
Vafajoo
,
L.
,
Ghasemi
,
E.
, and
Salman
,
B. H.
,
2016
, “
Experimental Investigation the Effect of Nanoparticle Concentration on the Rheological Behavior of Paraffin-Based Nickel Ferrofluid
,”
Int. J. Heat Mass Transf.
,
93
, pp.
228
234
.
112.
Talebizadehsardari
,
P.
,
Shahsavar
,
A.
,
Toghraie
,
D.
, and
Barnoon
,
P.
,
2019
, “
An Experimental Investigation for Study the Rheological Behavior of Water–Carbon Nanotube/Magnetite Nanofluid Subjected to a Magnetic Field
,”
Phys. A: Stat. Mech. Appl.
,
534
, p.
122129
.
113.
Contreras–Mateus
,
M. D.
,
López–López
,
M. T.
,
Ariza-León
,
E.
, and
Chaves–Guerrero
,
A.
,
2021
, “
Rheological Implications of the Inclusion of Ferrofluids and the Presence of Uniform Magnetic Field on Heavy and Extra-Heavy Crude Oils
,”
Fuel
,
285
, p.
119184
.
114.
Rosa
,
A. P.
, and
Cunha
,
F. R.
,
2019
, “
The Influence of Dipolar Particle Interactions on the Magnetization and the Rotational Viscosity of Ferrofluids
,”
Phys. Fluids
,
31
(
5
), p.
052006
.
115.
Odenbach
,
S.
,
2002
, “
Ferrofluids: Magnetically Controllable Liquids
,”
PAMM
,
1
(
1
), pp.
28
32
.
116.
Li
,
Z.
,
Yao
,
J.
, and
Li
,
D.
,
2017
, “
Research on the Rheological Properties of a Perfluoropolyether Based Ferrofluid
,”
J. Magn. Magn. Mater.
,
424
, pp.
33
38
.
117.
Hezaveh
,
H.
,
Fazlali
,
A.
, and
Noshadi
,
I.
,
2012
, “
Synthesis, Rheological Properties and Magnetoviscos Effect of Fe2O3/Paraffin Ferrofluids
,”
J. Taiwan Inst. Chem. Eng.
,
43
(
1
), pp.
159
164
.
118.
Embs
,
J.
,
Müller
,
H. W.
,
Wagner
,
C.
,
Knorr
,
K.
, and
Lücke
,
M.
,
2000
, “
Measuring the Rotational Viscosity of Ferrofluids Without Shear Flow
,”
Phys. Rev. E
,
61
(
3
), p.
R2196
.
119.
Odenbach
,
S.
,
Pop
,
L. M.
, and
Zubarev
,
A. Y.
,
2007
, “
Rheological Properties of Magnetic Fluids and Their Microstructural Background
,”
GAMM-Mitteilungen
,
30
(
1
), pp.
195
204
.
120.
Rosa
,
A. P.
, and
Cunha
,
F. R.
,
2020
, “
Shear Rate Dependence of Viscosity and Normal Stress Differences in Ferrofluids
,”
J. Magn. Magn. Mater.
,
499
.
121.
Pop
,
L. M.
, and
Odenbach
,
S.
,
2008
, “
Capillary Viscosimetry on Ferrofluids
,”
J. Phys.: Condens. Matter
,
20
(
20
), p.
204139
.
122.
Patel
,
R.
,
2012
, “
Ferrohydrodynamic Evaluation of Rotational Viscosity and Relaxation in Certain Ferrofluids
,”
Phys. Rev. E
,
86
(
1
), p.
016324
.
123.
Shliomis
,
M. I.
,
2001
, “
Ferrohydrodynamics: Testing a Third Magnetization Equation
,”
Phys. Rev. E
,
64
(
6
), p.
060501
.
124.
Patel
,
R.
,
Upadhyay
,
R. V.
, and
Mehta
,
R. V.
,
2003
, “
Viscosity Measurements of a Ferrofluid: Comparison With Various Hydrodynamic Equations
,”
J. Colloid Interface Sci.
,
263
(
2
), pp.
661
664
.
125.
Andhariya
,
N.
,
Chudasama
,
B.
,
Patel
,
R.
,
Upadhyay
,
R. V.
, and
Mehta
,
R. V.
,
2008
, “
Field Induced Rotational Viscosity of Ferrofluid: Effect of Capillary Size and Magnetic Field Direction
,”
J. Colloid Interface Sci.
,
323
(
1
), pp.
153
157
.
You do not currently have access to this content.