Abstract

In recent years, cold spray additive manufacturing (CSAM) has become an attractive technology for surface modification and protection. However, due to the intrinsic porous nature of CSAM coatings, they suffer from rapid material degradation due to premature brittle fracturing induced by tribological interactions. In this work, laser shock peening (LSP) was utilized as a post-processing technology to mitigate the surface porosity and augment the surface characteristics of CSAM 316L stainless steel (SS). Due to the synergistic influence of severe plastic deformation and rapid surface heating, the surface porosities were effectively healed, thus reducing the surface roughness. Combined with the surface-strengthening effects of LSP, the frictional resistance and transfer layer formation on the CSAM LSP surfaces were reduced. The underlying mechanisms for these findings were discussed by correlating the atomic, microstructural, and physical features of the LSP surfaces. Based on these findings, it can be suggested that LSP is indeed a useful technique to control the surface characteristics of CSAM 316L SS coatings.

References

1.
Ralls
,
A. M.
,
Kumar
,
P.
, and
Menezes
,
P. L.
,
2021
, “
Tribological Properties of Additive Manufactured Materials for Energy Applications: A Review
,”
Processes
,
9
(
1
), p.
31
.
2.
Pathak
,
S.
, and
Saha
,
G. C.
,
2017
, “
Development of Sustainable Cold Spray Coatings and 3D Additive Manufacturing Components for Repair/Manufacturing Applications: A Critical Review
,”
Coatings
,
7
(
8
), p.
122
.
3.
Roberts
,
W. H.
,
1981
, “
Tribology in Nuclear Power Generation
,”
Tribol. Int.
,
14
(
1
), pp.
17
28
.
4.
Raabe
,
D.
,
Choi
,
P.-P.
,
Li
,
Y.
,
Kostka
,
A.
,
Sauvage
,
X.
,
Lecouturier
,
F.
,
Hono
,
K.
,
Kirchheim
,
R.
,
Pippan
,
R.
, and
Embury
,
D.
,
2010
, “
Metallic Composites Processed via Extreme Deformation: Toward the Limits of Strength in Bulk Materials
,”
MRS Bull.
,
35
(
12
), pp.
982
991
.
5.
Khadem
,
M.
,
Penkov
,
O. V.
,
Yang
,
H.-K.
, and
Kim
,
D.-E.
,
2017
, “
Tribology of Multilayer Coatings for Wear Reduction: A Review
,”
Friction
,
5
(
3
), pp.
248
262
.
6.
Ralls
,
A. M.
,
Flores
,
C.
,
Kotowski
,
T.
,
Lee
,
C.
,
Kumar
,
P.
, and
Menezes
,
P. L.
,
2022
, “7—Development of Surface Roughness From Additive Manufacturing Processing Parameters and Postprocessing Surface Modification Techniques,”
Tribology of Additively Manufactured Materials
,
P.
Kumar
,
M.
Misra
, and
P. L.
Menezes
, eds.,
Elsevier
,
New York
, pp.
193
222
.
7.
John
,
M.
,
Ralls
,
A. M.
,
Dooley
,
S. C.
,
Thazhathidathil
,
A. K. V.
,
Perka
,
A. K.
,
Kuruveri
,
U. B.
, and
Menezes
,
P. L.
,
2021
, “
Ultrasonic Surface Rolling Process: Properties, Characterization, and Applications
,”
Appl. Sci.
,
11
(
22
), p.
10986
.
8.
Kishore
,
A.
,
John
,
M.
,
Ralls
,
A. M.
,
Jose
,
S. A.
,
Kuruveri
,
U. B.
, and
Menezes
,
P. L.
,
2022
, “
Ultrasonic Nanocrystal Surface Modification: Processes, Characterization, Properties, and Applications
,”
Nanomaterials
,
12
(
9
), p.
1415
.
9.
Joshi
,
M. D.
,
Kumar
,
V.
,
Singh
,
I.
, and
Hosmani
,
S. S.
,
2021
, “
Tribological Response of Mechanical Attrition Treated Surface of AISI 316L Steel: The Role of Velocity of Colliding Balls
,”
ASME J. Tribol.
,
143
(
3
), p.
031701
.
10.
Zhang
,
F.
,
Yin
,
M.
, and
Li
,
Q.
,
2022
, “
Fretting Wear Behavior of Micro-Arc Oxidation Coating Fabricated on AZ91 Magnesium Alloy
,”
ASME J. Tribol.
,
144
(
4
), p.
041703
.
11.
Nautiyal
,
H.
,
Sharma
,
P. K.
, and
Tyagi
,
R.
,
2020
, “
High-Temperature Erosive Wear Behavior of High-Velocity Oxy-Fuel Sprayed Cr3C225 (Ni20Cr) Coating on (AISI 316) Austenitic Steel
,”
ASME J. Tribol.
,
142
(
7
), p.
071702
.
12.
Marrocco
,
T.
,
Hussain
,
T.
,
McCartney
,
D. G.
, and
Shipway
,
P. H.
,
2011
, “
Corrosion Performance of Laser Posttreated Cold Sprayed Titanium Coatings
,”
J. Therm. Spray Technol.
,
20
(
4
), p.
909
.
13.
Ralls
,
A. M.
,
Kasar
,
A. K.
,
Daroonparvar
,
M.
,
Siddaiah
,
A.
,
Kumar
,
P.
,
Kay
,
C. M.
,
Misra
,
M.
, and
Menezes
,
P. L.
,
2022
, “
Effect of Gas Propellant Temperature on the Microstructure, Friction, and Wear Resistance of High-Pressure Cold Sprayed Zr702 Coatings on Al6061 Alloy
,”
Coatings
,
12
(
2
), p.
263
.
14.
Karthikeyan
,
J.
,
2007
, “4–The Advantages and Disadvantages of the Cold Spray Coating Process,”
The Cold Spray Materials Deposition Process
,
V. K.
Champagne
, ed.,
Woodhead Publishing
,
Sawston, UK
, pp.
62
71
.
15.
Monette
,
Z.
,
Kasar
,
A. K.
,
Daroonparvar
,
M.
, and
Menezes
,
P. L.
,
2020
, “
Supersonic Particle Deposition as an Additive Technology: Methods, Challenges, and Applications
,”
Int. J. Adv. Manuf. Technol.
,
106
(
5
), pp.
2079
2099
.
16.
Yildirim
,
B.
,
Fukanuma
,
H.
,
Ando
,
T.
,
Gouldstone
,
A.
, and
Müftü
,
S.
,
2015
, “
A Numerical Investigation Into Cold Spray Bonding Processes
,”
ASME J. Tribol.
,
137
(
1
), p.
011102
.
17.
Tejero-Martin
,
D.
,
Rezvani Rad
,
M.
,
McDonald
,
A.
, and
Hussain
,
T.
,
2019
, “
Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings
,”
J. Therm. Spray Technol.
,
28
(
4
), pp.
598
644
.
18.
Xie
,
J.
,
Nélias
,
D.
,
Walter-Le Berre
,
H.
,
Ogawa
,
K.
, and
Ichikawa
,
Y.
,
2015
, “
Simulation of the Cold Spray Particle Deposition Process
,”
ASME J. Tribol.
,
137
(
4
), p.
041101
.
19.
He
,
L.
, and
Hassani
,
M.
,
2020
, “
A Review of the Mechanical and Tribological Behavior of Cold Spray Metal Matrix Composites
,”
J. Therm. Spray Technol.
,
29
(
7
), pp.
1565
1608
.
20.
Yin
,
S.
,
Cavaliere
,
P.
,
Aldwell
,
B.
,
Jenkins
,
R.
,
Liao
,
H.
,
Li
,
W.
, and
Lupoi
,
R.
,
2018
, “
Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications
,”
Addit. Manuf.
,
21
, pp.
628
650
.
21.
Brewer
,
L. N.
,
Schiel
,
J. F.
,
Menon
,
E. S. K.
, and
Woo
,
D. J.
,
2018
, “
The Connections Between Powder Variability and Coating Microstructures for Cold Spray Deposition of Austenitic Stainless Steel
,”
Surf. Coat. Technol.
,
334
, pp.
50
60
.
22.
Kumar
,
S.
,
Kumar
,
M.
, and
Jindal
,
N.
,
2020
, “
Overview of Cold Spray Coatings Applications and Comparisons: A Critical Review
,”
World J. Eng.
,
17
(
1
), pp.
27
51
.
23.
Tan
,
K.
,
Markovych
,
S.
,
Hu
,
W.
,
Shorinov
,
O.
, and
Wang
,
Y.
,
2020
, “
Review of Manufacturing and Repair of Aircraft and Engine Parts Based on Cold Spraying Technology and Additive Manufacturing Technology
,”
Aerosp. Technic Technol.
,
3
, pp.
53
70
.
24.
Amiri
,
M.
,
Crawford
,
G. A.
, and
Earthman
,
J. C.
,
2021
, “
Quantitative Percussion Diagnostics for Evaluating Porosity and Surface Roughness of Cold Sprayed and Laser Deposited Materials
,”
J. Mater. Res. Technol.
,
14
, pp.
312
323
.
25.
Zhizhong
,
W.
,
Chao
,
H.
,
Huang
,
G.
,
Bin
,
H.
, and
Bin
,
H.
,
2021
, “
Cold Spray Micro-Defects and Post-Treatment Technologies: A Review
,”
Rapid Prototyp. J.
,
28
(
2
), pp.
330
357
.
26.
Poza
,
P.
, and
Garrido-Maneiro
,
,
2022
, “
Cold-Sprayed Coatings: Microstructure, Mechanical Properties, and Wear Behaviour
,”
Prog. Mater. Sci.
,
123
, p.
100839
.
27.
Sun
,
W.
,
Tan
,
A. W.-Y.
,
Wu
,
K.
,
Yin
,
S.
,
Yang
,
X.
,
Marinescu
,
I.
, and
Liu
,
E.
,
2020
, “
Post-Process Treatments on Supersonic Cold Sprayed Coatings: A Review
,”
Coatings
,
10
(
2
), p.
123
.
28.
Kumar
,
S.
,
Jyothirmayi
,
A.
,
Wasekar
,
N.
, and
Joshi
,
S. V.
,
2016
, “
Influence of Annealing on Mechanical and Electrochemical Properties of Cold Sprayed Niobium Coatings
,”
Surf. Coat. Technol.
,
296
, pp.
124
135
.
29.
Khodabakhshi
,
F.
,
Marzbanrad
,
B.
,
Shah
,
L. H.
,
Jahed
,
H.
, and
Gerlich
,
A. P.
,
2017
, “
Friction-Stir Processing of a Cold Sprayed AA7075 Coating Layer on the AZ31B Substrate: Structural Homogeneity, Microstructures and Hardness
,”
Surf. Coat. Technol.
,
331
, pp.
116
128
.
30.
Ghelichi
,
R.
,
Bagherifard
,
S.
,
Parienete
,
I. F.
,
Guagliano
,
M.
, and
Vezzù
,
S.
,
2010
, “
Experimental Study of Shot Peening Followed by Cold Spray Coating on Residual Stresses of the Treated Parts
,”
Struct. Durab. Health Monitor.
,
417–418
(
1
), pp.
397
400
. www.scientific.net/kem.417-418.397
31.
Sun
,
W.
,
Maharjan
,
N.
,
Wu
,
K.
,
Tan
,
A. W.-Y.
,
Huang
,
R.
,
Xie
,
Y.
,
Lan
,
H.
,
Chu
,
X.
, and
Liu
,
E.
,
2022
, “Modification of Cold Sprayed CoCrMo Alloy Coatings via Laser Shock Peening,”
Proceedings of the 2nd International Conference on Advanced Surface Enhancement (INCASE 2021)
,
Y.
Wei
, and
S.
Chng
, eds.,
Springer
,
Singapore
, pp.
185
188
.
32.
Delloro
,
F.
,
Zagouri
,
D.
,
Boustie
,
M.
, and
Jeandin
,
M.
,
2018
, “
A Laser Shock Approach to Cold Spray
,”
Mater. Sci. Forum
,
941
, pp.
1833
1840
.
33.
Mao
,
B.
,
Liao
,
Y.
, and
Li
,
B.
,
2018
, “
Gradient Twinning Microstructure Generated by Laser Shock Peening in an AZ31B Magnesium Alloy
,”
Appl. Surf. Sci.
,
457
, pp.
342
351
.
34.
Mao
,
B.
,
Liao
,
Y.
, and
Li
,
B.
,
2019
, “
Abnormal Twin-Twin Interaction in an Mg-3Al-1Zn Magnesium Alloy Processed by Laser Shock Peening
,”
Scr. Mater.
,
165
, pp.
89
93
.
35.
Mao
,
B.
,
Li
,
B.
,
Lin
,
D.
, and
Liao
,
Y.
,
2019
, “
Enhanced Room Temperature Stretch Formability of AZ31B Magnesium Alloy Sheet by Laser Shock Peening
,”
Mater. Sci. Eng. A
,
756
, pp.
219
225
.
36.
Siddaiah
,
A.
,
Mao
,
B.
,
Liao
,
Y.
, and
Menezes
,
P. L.
,
2020
, “
Effect of Laser Shock Peening on the Wear–Corrosion Synergistic Behavior of an AZ31B Magnesium Alloy
,”
ASME J. Tribol.
,
142
(
4
), p.
041701
.
37.
Siddaiah
,
A.
,
Mao
,
B.
,
Liao
,
Y.
, and
Menezes
,
P. L.
,
2018
, “
Surface Characterization and Tribological Performance of Laser Shock Peened Steel Surfaces
,”
Surf. Coat. Technol.
,
351
, pp.
188
197
.
38.
Peyre
,
P.
,
Fabbro
,
R.
,
Berthe
,
L.
, and
Dubouchet
,
C.
,
1996
, “
Laser Shock Processing of Materials, Physical Processes Involved and Examples of Applications
,”
J. Laser Appl.
,
8
(
3
), pp.
135
141
.
39.
Li
,
Y.
,
Ren
,
Z.
,
Jia
,
X.
,
Yang
,
W.
,
Nassreddin
,
N.
,
Dong
,
Y.
,
Ye
,
C.
,
Fortunato
,
A.
, and
Zhao
,
X.
,
2021
, “
The Effects of the Confining Medium and Protective Layer During Femtosecond Laser Shock Peening
,”
Manufacturing Letters
,
27
, pp.
26
30
.
40.
Wang
,
Y.
,
Pan
,
X.
,
Wang
,
X.
,
Liu
,
Z.
,
Liu
,
S.
,
Wan
,
W.
, and
Wang
,
P.
,
2021
, “
Influence of Laser Shock Peening on Surface Integrity and Tensile Property of High Strength Low Alloy Steel
,”
Chinese J. Aeronaut.
,
34
(
6
), pp.
199
208
.
41.
Li
,
X.
,
He
,
W.
,
Luo
,
S.
,
Nie
,
X.
,
Tian
,
L.
,
Feng
,
X.
, and
Li
,
R.
,
2019
, “
Simulation and Experimental Study on Residual Stress Distribution in Titanium Alloy Treated by Laser Shock Peening With Flat-Top and Gaussian Laser Beams
,”
Materials (Basel)
,
12
(
8
), p.
1343
.
42.
Maawad
,
E.
,
Sano
,
Y.
,
Wagner
,
L.
,
Brokmeier
,
H.-G.
, and
Genzel
,
C.
,
2012
, “
Investigation of Laser Shock Peening Effects on Residual Stress State and Fatigue Performance of Titanium Alloys
,”
Mater. Sci. Eng. A
,
536
, pp.
82
91
.
43.
Aldajah
,
S. H.
,
Ajayi
,
O. O.
,
Fenske
,
G. R.
, and
Xu
,
Z.
,
2005
, “
Effect of Laser Surface Modifications Tribological Performance of 1080 Carbon Steel
,”
ASME J. Tribol.
,
127
(
3
), pp.
596
604
.
44.
Hackel
,
L.
,
Rankin
,
J. R.
,
Rubenchik
,
A.
,
King
,
W. E.
, and
Matthews
,
M.
,
2018
, “
Laser Peening: A Tool for Additive Manufacturing Post-Processing
,”
Addit. Manuf.
,
24
, pp.
67
75
.
45.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Raut
,
A.
,
Mehta
,
S. G.
, and
Liang
,
H.
,
2021
, “
A Review on Corrosion and Wear of Additively Manufactured Alloys
,”
ASME J. Tribol.
,
143
(
5
), p.
050802
.
46.
Ajdelsztajn
,
L.
,
Zúñiga
,
A.
,
Jodoin
,
B.
, and
Lavernia
,
E. J.
,
2006
, “
Cold Gas Dynamic Spraying of a High Temperature Al Alloy
,”
Surf. Coat. Technol.
,
201
(
6
), pp.
2109
2116
.
47.
Banerjee
,
S.
, and
Spear
,
J.
,
2022
, “
“Confinement and Absorption Layer Free Nanosecond Laser Shock Peening of Tungsten and Its Alloy,” Opt. Lett.
,”
OL
,
47
(
18
), pp.
4736
4739
.
48.
Chen
,
L.
,
Wang
,
Z.
,
Gao
,
S.
,
Zhu
,
L.
,
Yu
,
W.
, and
Zheng
,
H.
,
2022
, “
Investigation on Femtosecond Laser Shock Peening of Commercially Pure Copper Without Ablative Layer and Confinement Layer in Air
,”
Optics & Laser Technology
,
153
, p.
108207
.
49.
Khazraji
,
A. N. A.-
, and
Mutasher
,
A. A.
,
2020
, “
Comparison Between Confined and Unconfined Laser Peening Effect on the Fatigue Life of Composite Materials
,”
Iraqi J. Sci.
,
61
(
7
), pp.
1657
1664
.
50.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
,
1990
, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
(
2
), pp.
775
784
.
51.
Lan
,
L.
,
Jin
,
X.
,
Gao
,
S.
,
He
,
B.
, and
Rong
,
Y.
,
2020
, “
Microstructural Evolution and Stress State Related to Mechanical Properties of Electron Beam Melted Ti-6Al-4 V Alloy Modified by Laser Shock Peening
,”
J. Mater. Sci. Technol.
,
50
, pp.
153
161
.
52.
Nečas
,
D.
, and
Klapetek
,
P.
,
2012
, “
Gwyddion: An Open-Source Software for SPM Data Analysis
,”
Centr. Eur. J. Phys.
,
10
(
1
), pp.
181
188
.
53.
Ralls
,
A. M.
,
Daroonparvar
,
M.
,
Kasar
,
A. K.
,
Misra
,
M.
, and
Menezes
,
P. L.
,
2022
, “
Influence of Friction Stir Processing on the Friction, Wear and Corrosion Mechanisms of Solid-State Additively Manufactured 316L Duplex Stainless Steel
,”
Tribol. Int.
,
178
, p.
108033
.
54.
G02 Committee
,
2016
,
Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear
,
ASTM International
,
West Conschohocken, PA
.
55.
Qiao
,
H.
,
Zhao
,
J.
, and
Gao
,
Y.
,
2015
, “
Experimental Investigation of Laser Peening on TiAl Alloy Microstructure and Properties
,”
Chinese J. Aeronaut.
,
28
(
2
), pp.
609
616
.
56.
Kalentics
,
N.
,
Sohrabi
,
N.
,
Tabasi
,
H. G.
,
Griffiths
,
S.
,
Jhabvala
,
J.
,
Leinenbach
,
C.
,
Burn
,
A.
, and
Logé
,
R. E.
,
2019
, “
Healing Cracks in Selective Laser Melting by 3D Laser Shock Peening
,”
Addit. Manuf.
,
30
, p.
100881
.
57.
Kalentics
,
N.
,
Boillat
,
E.
,
Peyre
,
P.
,
Ćirić-Kostić
,
S.
,
Bogojević
,
N.
, and
Logé
,
R. E.
,
2017
, “
Tailoring Residual Stress Profile of Selective Laser Melted Parts by Laser Shock Peening
,”
Addit. Manuf.
,
16
, pp.
90
97
.
58.
Sikhamov
,
R.
,
Fomin
,
F.
,
Klusemann
,
B.
, and
Kashaev
,
N.
,
2020
, “
The Influence of Laser Shock Peening on Fatigue Properties of AA2024-T3 Alloy With a Fastener Hole
,”
Metals
,
10
(
4
), p.
495
.
59.
Tan
,
Y.
,
Wu
,
G.
,
Yang
,
J.-M.
, and
Pan
,
T.
,
2004
, “
Laser Shock Peening on Fatigue Crack Growth Behaviour of Aluminium Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
8
), pp.
649
656
.
60.
Kashaev
,
N.
,
Ushmaev
,
D.
,
Ventzke
,
V.
,
Klusemann
,
B.
, and
Fomin
,
F.
,
2020
, “
On the Application of Laser Shock Peening for Retardation of Surface Fatigue Cracks in Laser Beam-Welded AA6056
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
7
), pp.
1500
1513
.
61.
Shadangi
,
Y.
,
Chattopadhyay
,
K.
,
Rai
,
S. B.
, and
Singh
,
V.
,
2015
, “
Effect of LASER Shock Peening on Microstructure, Mechanical Properties and Corrosion Behavior of Interstitial Free Steel
,”
Surf. Coat. Technol.
,
280
, pp.
216
224
.
62.
Samantaroy
,
P. K.
,
Girija
,
S.
,
Kaul
,
R.
, and
Kamachi Mudali
,
U.
,
2013
, “
Enhancement of Corrosion Resistance of Nickel Based Superalloys by Laser Surface Melting
,”
Surf. Eng.
,
29
(
7
), pp.
522
530
.
63.
Sun
,
Z.
,
Annergren
,
I.
,
Pan
,
D.
, and
Mai
,
T. A.
,
2003
, “
Effect of Laser Surface Remelting on the Corrosion Behavior of Commercially Pure Titanium Sheet
,”
Mater. Sci. Eng. A
,
345
(
1
), pp.
293
300
.
64.
Nguyen
,
T. T. P.
,
Tanabe
,
R.
, and
Ito
,
Y.
,
2013
, “
Influences of Focusing Conditions on Dynamics of Laser Ablation at a Solid–Liquid Interface
,”
Appl. Phys. Express
,
6
(
12
), p.
122701
.
65.
Forsblom
,
M.
, and
Grimvall
,
G.
,
2005
, “
How Superheated Crystals Melt
,”
Nature Mater
,
4
(
5
), pp.
388
390
.
66.
Leung
,
C. L. A.
,
Marussi
,
S.
,
Towrie
,
M.
,
del Val Garcia
,
J.
,
Atwood
,
R. C.
,
Bodey
,
A. J.
,
Jones
,
J. R.
,
Withers
,
P. J.
, and
Lee
,
P. D.
,
2018
, “
Laser-Matter Interactions in Additive Manufacturing of Stainless Steel SS316L and 13-93 Bioactive Glass Revealed by In Situ X-Ray Imaging
,”
Addit. Manuf.
,
24
, pp.
647
657
.
67.
du Plessis
,
A.
,
Glaser
,
D.
,
Moller
,
H.
,
Mathe
,
N.
,
Tshabalala
,
L.
,
Mfusi
,
B.
, and
Mostert
,
R.
,
2019
, “
Pore Closure Effect of Laser Shock Peening of Additively Manufactured AlSi10Mg
,”
3D Print Addit. Manuf.
,
6
(
5
), pp.
245
252
.
68.
Lesyk
,
D. A.
,
Dzhemelinskyi
,
V. V.
,
Martinez
,
S.
,
Mordyuk
,
B. N.
, and
Lamikiz
,
A.
,
2021
, “
Surface Shot Peening Post-Processing of Inconel 718 Alloy Parts Printed by Laser Powder Bed Fusion Additive Manufacturing
,”
J. Mater. Eng. Perform.
,
30
(
9
), pp.
6982
6995
.
69.
Chen
,
A. Y.
,
Ruan
,
H. H.
,
Wang
,
J.
,
Chan
,
H. L.
,
Wang
,
Q.
,
Li
,
Q.
, and
Lu
,
J.
,
2011
, “
The Influence of Strain Rate on the Microstructure Transition of 304 Stainless Steel
,”
Acta Mater.
,
59
(
9
), pp.
3697
3709
.
70.
Langer
,
K.
,
Olson
,
S.
,
Brockman
,
R.
,
Braisted
,
W.
,
Spradlin
,
T.
, and
Fitzpatrick
,
M. E.
,
2015
, “
High Strain-Rate Material Model Validation for Laser Peening Simulation
,”
J. Eng.
,
2015
(
13
), pp.
150
157
.
71.
Mordyuk
,
B. N.
,
Milman
,
Y.
,
Iefimov
,
V.
,
Prokopenko
,
M. O.
,
Silberschmidt
,
G. I.
,
Danylenko
,
V. V.
,
and Kotko
,
M. I.
, and
V
,
A.
,
2008
, “
Characterization of Ultrasonically Peened and Laser-Shock Peened Surface Layers of AISI 321 Stainless Steel
,”
Surf. Coat. Technol.
,
202
(
19
), pp.
4875
4883
.
72.
Ralls
,
A. M.
,
Daroonparvar
,
M.
,
Sikdar
,
S.
,
Rahman
,
M. H.
,
Monwar
,
M.
,
Watson
,
K.
,
Kay
,
C. M.
, and
Menezes
,
P. L.
,
2022
, “
Tribological and Corrosion Behavior of High Pressure Cold Sprayed Duplex 316 L Stainless Steel
,”
Tribol. Int.
,
169
, p.
107471
.
73.
Ungár
,
T.
,
2004
, “
Microstructural Parameters From X-Ray Diffraction Peak Broadening
,”
Scr. Mater.
,
51
(
8
), pp.
777
781
.
74.
Williamson
,
G. K.
, and
Hall
,
W. H.
,
1953
, “
X-Ray Line Broadening From Filed Aluminium and Wolfram
,”
Acta Metall.
,
1
(
1
), pp.
22
31
.
75.
Agarwal
,
R.
,
Mohan
,
A.
,
Mohan
,
S.
, and
Gautam
,
R. K.
,
2014
, “
Synthesis and Characterization of Al/Al3Fe Nanocomposite for Tribological Applications
,”
ASME J. Tribol.
,
136
(
1
), p.
012001
.
76.
Muiruri
,
A.
,
Maringa
,
M.
, and
du Preez
,
W.
,
2020
, “
Evaluation of Dislocation Densities in Various Microstructures of Additively Manufactured Ti6Al4V (Eli) by the Method of X-Ray Diffraction
,”
Materials
,
13
(
23
), p.
5355
.
77.
Lee
,
W.-S.
, and
Lin
,
C.-F.
,
2001
, “
Impact Properties and Microstructure Evolution of 304L Stainless Steel
,”
Mater. Sci. Eng. A
,
308
(
1
), pp.
124
135
.
78.
Sun
,
R.
,
Li
,
L.
,
Zhu
,
Y.
,
Guo
,
W.
,
Peng
,
P.
,
Cong
,
B.
,
Sun
,
J.
, et al
,
2018
, “
Microstructure, Residual Stress and Tensile Properties Control of Wire-Arc Additive Manufactured 2319 Aluminum Alloy With Laser Shock Peening
,”
J. Alloys Compd.
,
747
, pp.
255
265
.
79.
Sato
,
Y. S.
,
Urata
,
M.
,
Kokawa
,
H.
, and
Ikeda
,
K.
,
2003
, “
Hall–Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys
,”
Mater. Sci. Eng. A
,
354
(
1
), pp.
298
305
.
80.
Li
,
W.
,
Wu
,
D.
,
Hu
,
K.
,
Xu
,
Y.
,
Yang
,
X.
, and
Zhang
,
Y.
,
2021
, “
A Comparative Study on the Employment of Heat Treatment, Electric Pulse Processing and Friction Stir Processing to Enhance Mechanical Properties of Cold-Spray-Additive-Manufactured Copper
,”
Surf. Coat. Technol.
,
409
, p.
126887
.
81.
Cherry
,
J. A.
,
Davies
,
H. M.
,
Mehmood
,
S.
,
Lavery
,
N. P.
,
Brown
,
S. G. R.
, and
Sienz
,
J.
,
2015
, “
Investigation Into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
869
879
.
82.
Molero
,
G.
,
Du
,
S.
,
Mamak
,
M.
,
Agerton
,
M.
,
Hossain
,
M. M.
, and
Sue
,
H.-J.
,
2019
, “
Experimental and Numerical Determination of Adhesive Strength in Semi-Rigid Multi-Layer Polymeric Systems
,”
Polym. Test.
,
75
, pp.
85
92
.
83.
Du
,
S.
,
Zhu
,
Z.
,
Liu
,
C.
,
Zhang
,
T.
,
Hossain
,
M. M.
, and
Sue
,
H.-J.
,
2021
, “
Experimental Observation and Finite Element Method Modeling on Scratch-Induced Delamination of Multilayer Polymeric Structures
,”
Polym. Eng. Sci.
,
61
(
6
), pp.
1742
1754
.
84.
Yamaguchi
,
T.
,
Sugawara
,
T.
,
Takahashi
,
M.
,
Shibata
,
K.
,
Moriyasu
,
K.
,
Nishiwaki
,
T.
, and
Hokkirigawa
,
K.
,
2018
, “
Effect of Porosity and Normal Load on Dry Sliding Friction of Polymer Foam Blocks
,”
Tribol Lett
,
66
(
1
), p.
34
.
85.
Choi
,
D.
,
Lee
,
S.
,
Kim
,
S.
,
Lee
,
P.
,
Lee
,
K.
,
Park
,
H.
, and
Hwang
,
W.
,
2008
, “
Dependence of Adhesion and Friction on Porosity in Porous Anodic Alumina Films
,”
Scr. Mater.
,
58
(
10
), pp.
870
873
.
86.
Li
,
X.
, and
Olofsson
,
U.
,
2017
, “
A Study on Friction and Wear Reduction Due to Porosity in Powder Metallurgic Gear Materials
,”
Tribol. Int.
,
110
, pp.
86
95
.
87.
Menezes
,
P. L.
, and
Kailas
,
S. V.
,
2008
, “
Influence of Roughness Parameters and Surface Texture on Friction During Sliding of Pure Lead Over 080 M40 Steel
,”
Int. J. Adv. Manuf. Technol.
,
43
(
7
), p.
731
.
88.
Menezes
,
P. L.
, and
Kailas
,
S. V.
,
2006
, “Chapter 14—Studies On Friction And Transfer Layer Using Inclined Scratch,”
Tribology and Interface Engineering Series
,
S.
Sinha
, ed.,
Elsevier
,
New York
, pp.
262
279
.
89.
Sinha
,
A.
, and
Farhat
,
Z.
,
2015
, “
Effect of Surface Porosity on Tribological Properties of Sintered Pure Al and Al 6061
,”
Mater. Sci. Appl.
,
06
(
06
), pp.
549
566
.
90.
Ring
,
T. A.
,
Feeney
,
P.
,
Boldridge
,
D.
,
Kasthurirangan
,
J.
,
Li
,
S.
, and
Dirksen
,
J. A.
,
2007
, “
Brittle and Ductile Fracture Mechanics Analysis of Surface Damage Caused During CMP
,”
J. Electrochem. Soc.
,
154
(
3
), p.
H239
.
91.
Heinrichs
,
J.
,
Olsson
,
M.
, and
Jacobson
,
S.
,
2012
, “
Mechanisms of Material Transfer Studied in Situ in the SEM: Explanations to the Success of DLC Coated Tools in Aluminium Forming
,”
Wear
,
292–293
, pp.
49
60
.
92.
Menezes
,
P. L.
,
Kailas
,
S. V.
, and
Lovell
,
M. R.
,
2013
, “Fundamentals of Engineering Surfaces,”
Tribology for Scientists and Engineers: From Basics to Advanced Concepts
,
P. L.
Menezes
,
M.
Nosonovsky
,
S. P.
Ingole
,
S. V.
Kailas
, and
M. R.
Lovell
, eds.,
Springer New York
, pp.
3
41
.
93.
Rymuza
,
Z.
,
2007
, “
Tribology of Polymers
,”
Arch. Civ. Mech. Eng.
,
7
(
4
), pp.
177
184
.
94.
Zalaznik
,
M.
,
Kalin
,
M.
, and
Novak
,
S.
,
2016
, “
Influence of the Processing Temperature on the Tribological and Mechanical Properties of Poly-Ether-Ether-Ketone (PEEK) Polymer
,”
Tribol. Int.
,
94
, pp.
92
97
.
95.
Alajmi
,
M.
, and
Shalwan
,
A.
,
2015
, “
Correlation Between Mechanical Properties With Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites
,”
Materials (Basel)
,
8
(
7
), pp.
4162
4175
.
96.
Chen
,
J.
,
An
,
Y.
,
Liu
,
G.
,
Chen
,
G.
,
Zhao
,
X.
, and
Jia
,
L.
,
2022
, “
Tribological Performance and Thermal Stability of a Novel Cold Sprayed Nanostructured Ni-Based Lubrication Coating
,”
J. Therm. Spray Technol.
,
31
(
5
), pp.
1702
1711
.
97.
Menezes
,
P. L.
,
2006
, “
Kishore; Kailas, SV Influence Influence of Surface Texture on Coefficient of Friction and Transfer Layer Formation During Sliding of Pure Magnesium Pin on 080 M40 (EN8) Steel Plate
,”
Wear
,
261
(
5
), pp.
578
591
.
98.
Riyadh
,
A.
,
Khairel Rafezi
,
A.
,
Al-Douri
,
Y.
, and
Al-Samarai
,
R. A.
,
2012
, “
Evaluate the Effects of Various Surface Roughness on the Tribological Characteristics Under Dry and Lubricated Conditions for Al-Si Alloy
,”
J. Surf. Eng. Mater. Adv. Technol.
,
2
(
3
), pp.
167
173
.
99.
Du
,
S.
,
Mullins
,
M.
,
Hamdi
,
M.
, and
Sue
,
H.-J.
,
2020
, “
Quantitative Modeling of Scratch Behavior of Amorphous Polymers at Elevated Temperatures
,”
Polymer
,
197
, p.
122504
.
100.
Du
,
S.
,
Hamdi
,
M.
, and
Sue
,
H.-J.
,
2020
, “
Experimental and FEM Analysis of Mar Behavior on Amorphous Polymers
,”
Wear
,
444–445
, p.
203155
.
You do not currently have access to this content.