Abstract

The influence of the grease-water two-phase emulsion on the bearing tracks on the film formation has been studied by carrying out optical interferometry experiments on a ball disk test rig to observe the dynamic film-forming behavior of lubricating grease under steady-state and micro-oscillation conditions. It is found that free water causes a brief rise in the grease film under steady-state conditions, specifically due to the grease-water phase connecting the oil reservoirs on both sides. The experiment determines that the state of the phase before entering the elastohydrodynamic lubrication (EHL) contact is water-in-oil. For the reciprocating motion and oscillation, the effects of the amount of free water and the length of the motion stroke are discussed in detail. It is found that for reciprocating movements with long stroke lengths, the effect of free water is summarized to enhance the fluidity of the fibrous mass of the grease thickener in the first few cycles of the movement. For shorter stroke lengths, the effect of free water is a scouring effect on the contact zone grease after 100 cycles. This paper provides new insights into the effects that cause water pollution to the point of contact lubrication during the transformation from reciprocating motion to fretting.

References

1.
Harika
,
E.
,
Jarny
,
S.
,
Monnet
,
P.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2011
, “
Effect of Water Pollution on Rheological Properties of Lubricating Oil
,”
Appl. Rheol.
,
21
(
1
), pp.
1
9
.
2.
Cyriac
,
F.
,
Lugt
,
P. M.
, and
Bosman
,
R.
,
2016
, “
Impact of Water on the Rheology of Lubricating Greases
,”
Tribol. Trans.
,
59
(
4
), pp.
679
689
.
3.
Rod
,
O.
,
1981
, “
Water, Water Everywhere, Nor Any Drop to Drink
,”
J. Chem. Educ.
,
58
(
9
), p.
726
.
4.
Du
,
Y.
,
Wu
,
T.
, and
Gong
,
R.
,
2017
, “
Properties of Water-Contaminated Lubricating Oil: Variation With Temperature and Small Water Content
,”
Tribol. Mater. Surf. Interfaces
,
11
(
1
), pp.
1
6
.
5.
Bosman
,
R.
, and
Lugt
,
P. M.
,
2018
, “
The Microstructure of Calcium Sulfonate Complex Lubricating Grease and Its Change in the Presence of Water
,”
Tribol. Trans.
,
61
(
5
), pp.
842
849
.
6.
Zhou
,
Y.
,
Bosman
,
R.
, and
Lugt
,
P. M.
,
2019
, “
On the Shear Stability of Dry and Water-Contaminated Calcium Sulfonate Complex Lubricating Greases
,”
Tribol. Trans.
,
62
(
4
), pp.
626
634
.
7.
Darmawan
,
D.
,
2019
, “
Friction and Wear of Bearing Material Under Water Contaminated Compressor Oil
,”
J. Chem. Inf. Model.
,
53
(
9
), pp.
1689
1699
.
8.
Chen
,
L.
, and
Qian
,
L.
,
2021
, “
Role of Interfacial Water in Adhesion, Friction, and Wear—A Critical Review
,”
Friction
,
9
(
1
), pp.
1
28
.
9.
Engelhardt
,
C.
,
Witzig
,
J.
,
Tobie
,
T.
, and
Stahl
,
K.
,
2017
, “
Influence of Water Contamination in Gear Lubricants on Wear and Micro-Pitting Performance of Case Carburized Gears
,”
Ind. Lubr. Tribol.
,
69
(
4
), pp.
612
619
.
10.
Hudedagaddi
,
C. B.
,
Raghav
,
A. G.
,
Tortora
,
A. M.
, and
Veeregowda
,
D. H.
,
2017
, “
Water Molecules Influence the Lubricity of Greases and Fuel
,”
Wear
,
376
(
A
), pp.
831
835
.
11.
Cyriac
,
F.
,
Lugt
,
P. M.
,
Bosman
,
R.
, and
Venner
,
C. H.
,
2016
, “
Impact of Water on EHL Film Thickness of Lubricating Greases in Rolling Point Contacts
,”
Tribol. Lett.
,
61
(
3
), pp.
1
8
.
12.
Liu
,
X.
,
Wang
,
J.
,
Huang
,
L.
,
Zhang
,
J.
,
Xu
,
C.
,
Tong
,
L.
, and
Guo
,
D.
,
2021
, “
Direct Observation of the Impact of Water Droplets on Oil Replenishment in EHD Lubricated Contacts
,”
Friction
,
10
(
3
), pp.
388
397
.
13.
Ma
,
J.
,
Zhang
,
H.
,
Shi
,
Z.
,
Kontogiorgos
,
V.
,
Gu
,
F.
, and
Ball
,
A.
,
2018
, “
Vibration Analysis of Journal Bearings Under Water Contaminated Lubrication
,”
Proceedings of the ICAC 2018—2018 24th IEEE International Conference on Automation and Computing: Improving Productivity Through Automation and Computing
,
Newcastle University, Newcastle upon Tyne, UK
,
Sept. 6–7
, pp.
358
363
.
14.
Liu
,
X.
,
Guo
,
D.
,
Liu
,
S.
,
Xie
,
G.
, and
Luo
,
J.
,
2014
, “
Interfacial Dynamics and Adhesion Behaviors of Water and Oil Droplets in Confined Geometry
,”
Langmuir
,
30
(
26
), pp.
7695
7702
.
15.
Jin
,
X.
,
Li
,
X.
,
Chen
,
Q.
,
Yang
,
P.
,
Guo
,
F.
, and
Jiang
,
N.
,
2022
, “
Observation of Grease Film Behavior in Sliding-Rolling Concentrated Contacts
,”
ASME. J. Tribol.
,
144
(
1
), p.
011602
.
16.
Wu
,
M.
,
Han
,
X.
,
Tao
,
Y.
, and
Pei
,
J.
,
2022
, “
An Average Flow Model Considering Non-Newtonian Characteristics With Application to Grease Behavior
,”
ASME. J. Tribol.
,
144
(
10
), p.
101802
.
17.
Ohta
,
H.
,
Oguma
,
K.
,
Takane
,
K.
, and
Kato
,
S.
,
2021
, “
Friction Forces in a Linear-Guideway Type Recirculating Ball Bearing Under Grease Lubrication
,”
ASME. J. Tribol.
,
143
(
6
), p.
064501
.
18.
Liang
,
H.
,
Fan
,
Z.
,
Wang
,
W.
, and
Zhao
,
Z.
,
2023
, “
Experimental Investigation of the Oil Supply Layer in a Model Rolling Bearing
,”
ASME. J. Tribol.
,
145
(
1
), p.
011802
.
19.
Cen
,
H.
,
Morina
,
A.
, and
Neville
,
A.
,
2019
, “
Effect of Ageing on Lubricants’ Physical and Chemical Properties and Tribological Performance: Part II: Effect of Water Contamination on Lubricant
,”
Ind. Lubr. Tribol.
,
71
(
1
), pp.
48
53
.
20.
Spikes
,
H. A.
, and
Cann
,
P. M.
,
2005
, “
The Development and Application of the Spacer Layer Imaging Method for Measuring Lubricant Film Thickness
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
215
(
3
), pp.
261
277
.
21.
Cann
,
P. M.
,
Damiens
,
B.
, and
Lubrecht
,
A. A.
,
2004
, “
The Transition Between Fully Flooded and Starved Regimes in EHL
,”
Tribol. Int.
,
37
(
10
), pp.
859
864
.
22.
Kanazawa
,
Y.
,
Sayles
,
R. S.
, and
Kadiric
,
A.
,
2017
, “
Film Formation and Friction in Grease Lubricated Rolling-Sliding Non-Conformal Contacts
,”
Tribol. Int.
,
109
(
5
), pp.
505
518
.
23.
Kanazawa
,
Y.
,
De Laurentis
,
N.
, and
Kadiric
,
A.
,
2020
, “
Studies of Friction in Grease-Lubricated Rolling Bearings Using Ball-on-Disc and Full Bearing Tests
,”
Tribol. Trans.
,
63
(
1
), pp.
77
89
.
24.
Dittes
,
N.
,
Pettersson
,
A.
,
Marklund
,
P.
,
Lang
,
D.
, and
Lugt
,
P. M.
,
2018
, “
Dielectric Thermoscopy Characterization of Water Contaminated Grease
,”
Tribol. Trans.
,
61
(
3
), pp.
393
402
.
25.
Dittes
,
N.
,
Pettersson
,
A.
,
Sjödahl
,
M.
,
Casselgren
,
J.
,
Marklund
,
P.
, and
Lugt
,
P. M.
,
2018
, “
Optical Attenuation Characterization of Water Contaminated Lubricating Grease
,”
Tribol. Trans.
,
61
(
4
), pp.
726
732
.
26.
Petrousevitch
,
A. I.
,
Kodnir
,
D. S.
,
Salukvadze
,
R. G.
,
Bakashvili
,
D. L.
, and
Sh Schwarzman
,
V.
,
1972
, “
The Investigation of Oil Film Thickness in Lubricated Ball-Race Rolling Contact
,”
Wear
,
19
(
4
), pp.
369
389
.
27.
Sugimura
,
J.
,
Jones
,
W. R.
, and
Spikes
,
H. A.
,
1998
, “
EHD Film Thickness in Non-Steady State Contacts
,”
ASME J. Tribol.
,
120
(
3
), pp.
442
452
.
28.
Wang
,
J.
,
Kaneta
,
M.
, and
Yang
,
P.
,
2005
, “
Numerical Analysis of TEHL Line Contact Problem Under Reciprocating Motion
,”
Tribol. Int.
,
38
(
2
), pp.
165
178
.
29.
Wang
,
J.
,
Hashimoto
,
T.
,
Nishikawa
,
H.
, and
Kaneta
,
M.
,
2005
, “
Pure Rolling Elastohydrodynamic Lubrication of Short Stroke Reciprocating Motion
,”
Tribol. Int.
,
38
(
11–12
SPEC. ISS.), pp.
1013
1021
.
30.
Wang
,
J.
,
Meng
,
X.
,
Wang
,
S.
, and
Zou
,
Q.
,
2017
, “
Grease Film Variation in Reciprocating Sliding Motion
,”
Tribol. Int.
,
114
(
10
), pp.
373
388
.
31.
Han
,
Y.
,
Wang
,
J.
,
Wang
,
S.
,
Zou
,
Q.
, and
Barber
,
G.
,
2020
, “
Response of Grease Film at Low Speeds Under Pure Rolling Reciprocating Motion
,”
Friction
,
8
(
1
), pp.
115
135
.
32.
Nishikawa
,
H.
,
Handa
,
K.
, and
Kaneta
,
M.
,
1995
, “
Behavior of EHL Films in Reciprocating Motion
,”
Jpn. Soc. Mech. Eng.
,
38
(
3
), pp.
558
567
.
33.
Glovnea
,
R. P.
, and
Spikes
,
H. A.
,
2005
, “
EHD Contacts in Low-Amplitude Oscillatory Motion, World Tribology Congress, 42010
. Paper No. WTC2005-63226, pp.
456
456
34.
Nishikawa
,
H.
, and
Kaneta
,
M.
,
1995
, “
Traction in EHL Under Pure Sliding Reciprocation With Cyclic Impact Loading
,”
Jpn. Soc. Mech. Eng.
,
38
(
3
), pp.
568
576
.
35.
Zhou
,
Z. R.
,
Kapsa
,
P.
, and
Vincent
,
L.
,
1998
, “
Grease Lubrication in Fretting
,”
ASME J. Tribol.
,
120
(
4
), pp.
737
743
.
36.
Kalin
,
M.
, and
Vižintin
,
J.
,
2006
, “
The Tribological Performance of DLC Coatings Under Oil-Lubricated Fretting Conditions
,”
Tribol. Int.
,
39
(
10
), pp.
1060
1067
.
37.
Han
,
Y.
,
Wang
,
J.
,
Li
,
W.
,
Ma
,
R.
, and
Jin
,
X.
,
2019
, “
Oil Film Variation and Surface Damage in the Process of Reciprocation-Oscillation Transformation
,”
Tribol. Int.
,
140
(
12
), p.
105828
.
38.
Hartl
,
M.
,
Krupka
,
I.
, and
Liska
,
M.
,
1998
, “
Differential Colorimetry: A Tool for Evaluation of Chromatic Interference Pattern
,”
Opt.Eng.
,
36
(
9
), pp.
2384
2391
.
39.
Hartl
,
M.
,
Krupka
,
I.
, and
Liska
,
M.
,
1999
, “
Elastohydrodynamic Film Thickness Mapping by Computer Differential Colorimetry
,”
Tribol. Trans.
,
42
(
2
), pp.
361
368
.
40.
Hartl
,
M.
,
Krupka
,
I.
,
Poliscuk
,
R.
, and
Liška
,
M.
,
1999
, “
An Automatic System for Real-Time Evaluation of EHD Film Thickness and Shape Based on the Colorimetric Interferometry
,”
Tribol. Trans.
,
42
(
2
), pp.
303
309
.
41.
Hartl
,
M.
,
Krupka
,
I.
,
Poliscuk
,
R.
,
Liska
,
M.
,
Molimard
,
J.
,
Querry
,
M.
, and
Vergne
,
P.
,
2001
, “
Thin Film Colorimetric Interferometry
,”
Tribol. Trans.
,
44
(
2
), pp.
270
276
.
42.
Liu
,
H. C.
,
Guo
,
F.
,
Guo
,
L.
, and
Wong
,
P. L.
,
2015
, “
A Dichromatic Interference Intensity Modulation Approach to Measurement of Lubricating Film Thickness
,”
Tribol. Lett.
,
58
(
1
), pp.
1
11
.
43.
Liang
,
H.
,
Guo
,
D.
,
Ma
,
L.
, and
Luo
,
J.
,
2017
, “
Investigation of Film Formation Mechanism of Oil-in-Water (O/W) Emulsions at High Speeds
,”
Tribol. Int.
,
109
(
5
), pp.
428
434
.
44.
Han
,
Y.
,
Wang
,
J.
,
Jin
,
X.
,
Wang
,
S.
, and
Zhang
,
R.
,
2022
, “
Effects of Slide-Roll Ratio and Varying Velocity Lubrication Performance of Grease at Low Speed
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
235
(
10
), pp.
2122
2136
.
45.
Han
,
Y.
,
Wang
,
J.
,
Li
,
W.
,
Li
,
H.
, and
Pu
,
J.
,
2023
, “
Evolution of Grease Lubrication Regimes and Surface Damage During Reciprocation-Oscillation Transformation
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
237
(
2
), pp.
248
267
.
You do not currently have access to this content.