Abstract
This paper proposes a simplistic approach toward estimating incremental wear in a multi-contact scenario using a vibrational analysis approach and in turn goes a step forward to model its associated sound. Predicted wear depth and frictional sound are compared to the experimental values obtained using a standardized pin-on-disc tribometer setup affixed with a free-field microphone to capture air-borne noise. The results show good conformity between the proposed analytical model values and the standardized experiments, hence ensuing that within certain limitations, the proposed model and the intended approach can effectively be used as a good estimator of wear and its sound in a multi-contact scenario.
References
1.
Borghesani
, P.
, Smith
, W. A.
, Zhang
, X.
, Feng
, P.
, Antoni
, J.
, and Peng
, Z.
, 2018
, “A New Statistical Model for Acoustic Emission Signals Generated From Sliding Contact in Machine Elements
,” Tribol. Int.
, 127
, pp. 412
–419
. 2.
Basit
, K.
, Shams
, H.
, Khan
, M. A.
, and Mansoor
, A.
, 2020
, “Empirical Modelling of Frictional Noise and Two-Point Contact Using Ball-On-Disc Tribometer
,” TESConf 2020 – 9th International Conference on Through-life Engineering Services
, Cranfield, UK
, Oct. 23
.3.
Khan
, M. A.
, Hussnain
, R. B.
, Basit
, K.
, Safdar
, M.
, and Raza
, M.
, 2013
, “Effect of Lubricant on Wear Debris Color Diagnosis
,” J. Mech. Eng. Technol.
, 5
(2
), pp. 89
–99
.4.
Wang
, L.
, Sheng
, X.
, and Luo
, J.
, 2022
, “A Peridynamic Frictional Contact Model for Contact Fatigue Crack Initiation and Propagation
,” Eng. Fract. Mech.
, 264
, p. 108338
. 5.
Wang
, L.
, Duan
, J.
, He
, M.
, Liu
, Y.
, and Bao
, Y.
, 2023
, “Study on Antifriction Mechanism of Surface Textured Elliptical Bearings
,” ASME J. Tribol.
, 145
(1
), p. 011702
. 6.
Yin
, N.
, Xing
, Z.
, He
, K.
, and Zhang
, Z.
, 2023
, “Tribo-Informatics Approaches in Tribology Research: A Review
,” Friction
, 11
(1
), pp. 1
–22
. 7.
Raadnui
, S.
, 2019
, “Spur Gear Wear Analysis as Applied for Tribological Based Predictive Maintenance Diagnostics
,” Wear
, 426–427
, pp. 1748
–1760
. 8.
Vianna
, W. O. L.
, and Yoneyama
, T.
, 2018
, “Predictive Maintenance Optimization for Aircraft Redundant Systems Subjected to Multiple Wear Profiles
,” IEEE Syst. J.
, 12
(2
), pp. 1170
–1181
. 9.
Shams
, H.
, Basit
, K.
, Khan
, M. A.
, Mansoor
, A.
, and Saleem
, S.
, 2021
, “Scalable Wear Resistant 3D Printed Slippery Liquid Infused Porous Surfaces (SLIPS)
,” Addit. Manuf.
, 48
(A
). 10.
Shams
, H.
, Basit
, K.
, Khan
, M. A.
, and Mansoor
, A.
, 2020
, “Wear Behavior of 3D Printed PLA Surfaces for Superhydrophobic Interaction
,” TESConf 2020 – 9th International Conference on Through-life Engineering Services
, Cranfield, UK
, Oct. 23
.11.
Shahid
, M. A.
, Khan
, T. M.
, Lontin
, K.
, Basit
, K.
, and Khan
, M.
, 2020
, “Multiple Point Contact Wear Prediction and Source Identification Scheme Using a Single Channel Blended Airborne Acoustic Signature
,” IFAC-PapersOnLine
, 53
(3
), pp. 283
–288
. 12.
Geng
, Z.
, Puhan
, D.
, and Reddyhoff
, T.
, 2019
, “Using Acoustic Emission to Characterize Friction and Wear in Dry Sliding Steel Contacts
,” Tribol. Int.
, 134
, pp. 394
–407
. 13.
Shanbhag
, V. V.
, Rolfe
, B. F.
, Arunachalam
, N.
, and Pereira
, M. P.
, 2018
, “Investigating Galling Wear Behaviour in Sheet Metal Stamping Using Acoustic Emissions
,” Wear
, 414–415
, pp. 31
–42
. 14.
Lychagin
, D. V.
, Filippov
, A. V.
, Kolubaev
, E. A.
, Novitskaia
, O. S.
, Chumlyakov
, Y. I.
, and Kolubaev
, A. V.
, 2018
, “Dry Sliding of Hadfield Steel Single Crystal Oriented to Deformation by Slip and Twinning: Deformation, Wear, and Acoustic Emission Characterization
,” Tribol. Int.
, 119
, pp. 1
–18
. 15.
Wang
, J.
, Huo
, L.
, Liu
, C.
, Peng
, Y.
, and Song
, G.
, 2018
, “Feasibility Study of Real-Time Monitoring of Pin Connection Wear Using Acoustic Emission
,” Appl. Sci.
, 8
(10
), p. 1775
. 16.
Yan
, W.
, O’Dowd
, N. P.
, and Busso
, E. P.
, 2002
, “Numerical Study of Sliding Wear Caused by a Loaded Pin on a Rotating Disc
,” J. Mech. Phys. Solids
, 50
(3
), pp. 449
–470
. 17.
Rigney
, D. A.
, 1988
, “Sliding Wear of Metals
,” Annu. Rev. Mater. Sci.
, 18
(1
), pp. 141
–163
. 18.
Jahangiri
, M.
, Hashempour
, M.
, Razavizadeh
, H.
, and Rezaie
, H. R.
, 2012
, “Application and Conceptual Explanation of an Energy-Based Approach for the Modelling and Prediction of Sliding Wear
,” Wear
, 274–275
, pp. 168
–174
. 19.
Noraphaiphipaksa
, N.
, Kanchanomai
, C.
, and Mutoh
, Y.
, 2013
, “Numerical and Experimental Investigations on Fretting Fatigue: Relative Slip, Crack Path, and Fatigue Life
,” Eng. Fract. Mech.
, 112–113
, pp. 58
–71
. 20.
Karupannasamy
, D. K.
, Kailas
, S. V.
, Shankar
, S.
, and Sasikumar
, K. S. K.
, 2022
, “A Predictive Model for Galling Phenomenon and Its Applicability for Deep Drawing Processes
,” ASME J. Tribol.
, 144
(1
), p. 011705
. 21.
Dhope
, K.
, and Tallur
, S.
, 2018
, “Analytical Model for Monitoring of AFM Tip Wear Through Resonance Frequency Measurements
,” Proceedings of the 2018 4th IEEE International Conference on Emerging Electronics (ICEE)
, IEEE
, pp. 1
–4
.22.
Teymuri Sindi
, C.
, 2019
, “Development of an Acoustic Emission Model for Adhesive Wear
,” Mater. Eval.
, 77
(4
), pp. 529
–534
.23.
Stavropoulos
, P.
, Papacharalampopoulos
, A.
, and Souflas
, T.
, 2020
, “Indirect Online Tool Wear Monitoring and Model-Based Identification of Process-Related Signal
,” Adv. Mech. Eng.
, 12
(5
), p. 168781402091920
. 24.
Zhou
, Y.
, Peng
, M.
, Zuo
, X.
, and Xu
, J.
, 2022
, “Correlation Between Friction Coefficient and Friction Vibration in Running-In Process Based on Cross Recurrence Plots
,” ASME J. Tribol.
, 144
(1
), p. 011703
. 25.
Hasan
, M. S.
, Kordijazi
, A.
, Rohatgi
, P. K.
, and Nosonovsky
, M.
, 2022
, “Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods
,” ASME J. Tribol.
, 144
(1
), p. 011701
. 26.
Guilbault
, R.
, and Lalonde
, S.
, 2019
, “A Stochastic Prediction of Roughness Evolution in Dynamic Contact Modelling Applied to Gear Mild Wear and Contact Fatigue
,” Tribol. Int.
, 140
, p. 105854
. 27.
Feng
, K.
, Ni
, Q.
, and Zheng
, J.
, 2022
, “Vibration-Based System Degradation Monitoring Under Gear Wear Progression
,” Coatings
, 12
(7
), p. 892
. 28.
Ma
, W.
, Li
, X.
, Wang
, Q.
, and Jiang
, X.
, 2022
, “Theoretical Analysis of the Effects of Grain Size and Orientation on Rail Damage
,” Eng. Fract. Mech.
, 259
, p. 108148
. 29.
le Bot
, A.
, 2017
, “Noise of Sliding Rough Contact
,” J. Phys.: Conf. Ser.
, 797
, p. 012006
. 30.
Xu
, J. Y.
, Mo
, J. L.
, Huang
, B.
, Wang
, X. C.
, Zhang
, X.
, and Zhou
, Z. R.
, 2018
, “Reducing Friction-Induced Vibration and Noise by Clearing Wear Debris From Contact Surface by Blowing Air and Adding Magnetic Field
,” Wear
, 408–409
, pp. 238
–247
. 31.
Josue da Silva
, P.
, and Alvares
, A. J.
, 2020
, “Investigation of Tool Wear in Single Point Incremental Sheet Forming
,” Proc. Inst. Mech. Eng. B: J. Eng. Manuf.
, 234
(1–2
), pp. 170
–188
. 32.
Yang
, Y. Y.
, 2013
, “Solutions of Dissimilar Material Contact Problems
,” Eng. Fract. Mech.
, 100
, pp. 92
–107
. 33.
Zhang
, H.
, Wang
, W.
, Zhang
, S.
, and Zhao
, Z.
, 2017
, “Modeling of Elastic Finite-Length Space Rolling-Sliding Contact Problem
,” Tribol. Int.
, 113
, pp. 224
–237
. 34.
Wang
, X. C.
, Mo
, J. L.
, Ouyang
, H.
, Wang
, D. W.
, Chen
, G. X.
, Zhu
, M. H.
, and Zhou
, Z. R.
, 2016
, “Squeal Noise of Friction Material With Groove-Textured Surface: An Experimental and Numerical Analysis
,” ASME J. Tribol.
, 138
(2
), p. 021401
. 35.
Zhang
, Z.
, Yin
, N.
, Chen
, S.
, and Liu
, C.
, 2021
, “Tribo-Informatics: Concept, Architecture, and Case Study
,” Friction
, 9
(3
), pp. 642
–655
. 36.
Xiang
, Z. Y.
, Mo
, J. L.
, Ouyang
, H.
, Massi
, F.
, Tang
, B.
, and Zhou
, Z. R.
, 2020
, “Contact Behaviour and Vibrational Response of a High-Speed Train Brake Friction Block
,” Tribol. Int.
, 152
, p. 106540
. 37.
Wang
, H.
, Liu
, Z.
, Zou
, L.
, and Yang
, J.
, 2017
, “Influence of Both Friction and Wear on the Vibration of Marine Water Lubricated Rubber Bearing
,” Wear
, 376–377
, pp. 920
–930
. 38.
Yonemura
, S.
, Zhou
, L.
, and Talke
, F. E.
, 2003
, “An Investigation of Slider Vibrations in Near Contact Recording Using a Digital Laser Doppler Vibrometer
,” ASME J. Tribol.
, 125
(3
), pp. 571
–575
. 39.
Lazzari
, A.
, Tonazzi
, D.
, and Massi
, F.
, 2019
, “Squeal Propensity Characterization of Brake Lining Materials Through Friction Noise Measurements
,” Mech. Syst. Signal Process.
, 128
, pp. 216
–228
. 40.
Denimal
, E.
, Nacivet
, S.
, Nechak
, L.
, and Sinou
, J.-J.
, 2017
, “On the Influence of Multiple Contact Conditions on Brake Squeal
,” Proc. Eng.
, 199
, pp. 3260
–3265
. 41.
Sanchez-Marin
, F.
, Roda-Casanova
, V.
, and Porras-Vazquez
, A.
, 2018
, “A New Analytical Model to Predict the Transversal Deflection Under Load of Stepped Shafts
,” Int. J. Mech. Sci.
, 146–147
, pp. 91
–104
. 42.
Khafidh
, M.
, Setiyana
, B.
, Jamari
, J.
, Masen
, M. A.
, and Schipper
, D. J.
, 2018
, “Understanding the Occurrence of a Wavy Wear Track on Elastomeric Materials
,” Wear
, 412–413
, pp. 23
–29
. 43.
Earles
, S. W. E.
, and Badi
, M. N. M.
, 1984
, “Oscillatory Instabilities Generated in a Double-Pin and Disc Undamped System: A Mechanism of Disc-Brake Squeal
,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
, 198
(1
), pp. 43
–50
. 44.
Earles
, S. W. E.
, and Badi
, M. N. M.
, 1978
, “On the Interaction of a Two-Pin-Disc System With Reference to the Generation of Disc-Brake Squeal
,” Automotive Engineering Congress and Exposition
, Detroit, MI
, Feb. 1
.45.
Zerbst
, U.
, Lundén
, R.
, Edel
, K.-O.
, and Smith
, R. A.
, 2009
, “Introduction to the Damage Tolerance Behaviour of Railway Rails—A Review
,” Eng. Fract. Mech.
, 76
(17
), pp. 2563
–2601
. 46.
Earles
, S. W. E.
, and Chambers
, P. W.
, 1987
, “Disc Brake Squeal Noise Generation: Predicting Its Dependency on System Parameters Including Damping
,” Int. J. Vehicle Des.
, 8
(4–6
), pp. 538
–552
. https://www.inderscienceonline.com/doi/10.1504/IJVD.1987.06121747.
Sen
, O. T.
, Dreyer
, J. T.
, and Singh
, R.
, 2013
, “Low Frequency Dynamics of a Translating Friction Element in the Presence of Frictional Guides, as Motivated by a Brake Vibration Problem
,” J. Sound Vib.
, 332
(22
), pp. 5766
–5788
. 48.
Khan
, M.
, Basit
, K.
, Khan
, S.
, Khan
, K.
, and Starr
, A.
, 2017
, “Experimental Assessment of Multiple Contact Wear Using Airborne Noise Under Dry and Lubricated Conditions
,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
, 231
(12
), pp. 1503
–1516
. 49.
Rao
, S. S.
, 2019
, “Derivation of Equations,” Vibration of Continuous Systems
, John Wiley & Sons, Inc
, Hoboken, NJ
, pp. 69
–85
.50.
Machado
, M.
, Moreira
, P.
, Flores
, P.
, and Lankarani
, H. M.
, 2012
, “Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,” Mech. Mach. Theory
, 53
, pp. 99
–121
. 51.
Jia
, K.
, and Fischer
, T. E.
, 1997
, “Sliding Wear of Conventional and Nanostructured Cemented Carbides
,” Wear
, 203–204
, pp. 310
–318
. 52.
Archard
, J. F.
, 1953
, “Contact and Rubbing of Flat Surfaces
,” J. Appl. Phys.
, 24
(8
), pp. 981
–988
. 53.
Johnson
, K. L.
, 1982
, “One Hundred Years of Hertz Contact
,” Proc. Inst. Mech. Eng.
, 196
(1
), pp. 363
–378
. 54.
Hegadekatte
, V.
, Huber
, N.
, and Kraft
, O.
, 2006
, “Modeling and Simulation of Wear in a Pin on Disc Tribometer
,” STLE/ASME International Joint Tribology Conference
, San Antonio, TX
, Oct. 22–25
, ASME, pp. 567
–575
.55.
Oliver
, W. C.
, and Pharr
, G. M.
, 1992
, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,” J. Mater. Res.
, 7
(6
), pp. 1564
–1583
. 56.
Harrison
, M.
, 2004
, “Interior Noise: Assessment and Control,” Vehicle Refinement
, Elsevier
, New York
, pp. 145
–233
.57.
Lontin
, K.
, and Khan
, M. A.
, 2021
, “Wear and Airborne Noise Interdependency at Asperitical Level: Analytical Modelling and Experimental Validation
,” Materials
, 14
(23
), p. 7308
. Copyright © 2023 by ASME
You do not currently have access to this content.