Abstract

The lubrication properties and friction characteristics of the valve plate pair play a vital role in determining the overall lifespan of the axial piston pump, which makes the analysis of these parameters of significant importance. In this paper, the lubrication model of the cylinder block/valve plate sliding interface of the axial piston pump, considering elastic deformation and cylinder block dynamics, is established. The oil film carrying pressure and asperity microcontact pressure are calculated using the Reynolds equation, Greenwood–Williamson asperity microcontact model, and Hertz contact theory. The dynamic analysis is carried out, and the Newton–Raphson iterative method is introduced to solve the nonlinear equations. The influence of working pressure, cylinder speed, and sealing belt width on the friction characteristics of the valve plate pair is analyzed using the numerical calculation model. The simulation results demonstrate the dynamic changes of the cylinder block and the impact of them on lubrication properties and friction characteristics. The experimental results of the friction coefficient at different cylinder speeds are consistent with the simulation results in trend and accurately reflect the fluctuation of the friction coefficient.

References

1.
Chen
,
L.
,
Shang
,
L.
,
Liu
,
Z.
,
Mukherjee
,
S.
,
Cai
,
Y.
, and
Wang
,
B.
,
2023
, “
Effects of Chevron Micro-Textures on Tribological and Lubricating Performance of Cylinder Block/Valve Plate Interface in Axial Piston Pumps
,”
ASME J. Tribol.
,
145
(
3
), p.
032201
.
2.
Zhao
,
J.
,
Fu
,
Y.
,
Ma
,
J.
,
Jiming
,
F.
,
Chao
,
Q.
, and
Wang
,
Y.
,
2021
, “
Review of Cylinder Block/Valve Plate Interface in Axial Piston Pumps: Theoretical Models, Experimental Investigations, and Optimal Design
,”
Chin. J. Aeronaut.
,
34
(
1
), pp.
111
134
.
3.
Zhao
,
J.
,
Fu
,
Y.
,
Wang
,
M.
,
Fu
,
J.
,
Chao
,
Q.
,
Wang
,
S.
, and
Deng
,
M.
,
2021
, “
Experimental Research on Tribological Characteristics of TiAlN Coated Valve Plate in Electro-Hydrostatic Actuator Pumps
,”
Tribol. Int.
,
155
, p.
106782
.
4.
Schenk
,
A.
, and
Ivantysynova
,
M.
,
2015
, “
A Transient Thermoelastohydrodynamic Lubrication Model for the Slipper/Swashplate in Axial Piston Machines
,”
ASME J. Tribol.
,
137
(
3
), p.
031701
.
5.
Yamaguchi
,
A.
,
1966
, “
Pressure Distribution on Valve Plate of Axial Plunger Pumps and Motors
,”
Prod. Res.
,
18
(
7
), pp.
186
188
.
6.
Yamaguchi
,
A.
,
1986
, “
Formation of a Fluid Film Between a Valve Plate and a Cylinder Block of Piston Pumps and Motors: 1st Report, A Valve Plate With Hydrodynamic Pads
,”
Bull. JSME
,
29
(
251
), pp.
1494
1498
.
7.
Yamaguchi
,
A.
,
1987
, “
Formation of a Fluid Film Between a Valve Plate and a Cylinder Block of Piston Pumps and Motors: 2nd Report, A Valve Plate With Hydrostatic Pads: Heat Transfer, Combustion, Power, Thermophysical Properties
,”
JSME Int J.
,
30
(
259
), pp.
87
92
.
8.
Ivantysynova
,
M.
, and
Huang
,
C.
,
2002
, “
Investigation of the Gap Flow in Displacement Machines Considering Elastohydrodynamic Effect
,” Paper No. 5-1, pp.
219
229
.
9.
Huang
,
C.
,
2003
, “
A New Approach to Predict the Load Carrying Ability of the Gap Between Valve Plate and Cylinder Block
,”
Bath Workshop of Power Transmission and Motion Control PTMC 2003
,
Bath, UK
,
Sept. 10–12
, pp.
225
239
.
10.
Jouini
,
N.
, and
Ivantysynova
,
M.
,
2008
, “
Valve Plate Surface Temperature Prediction in Axial Piston Machines
,”
Proceedings of the 5th FPNI PhD Symposium
,
Krakow, Poland
,
July 1–5
, pp.
95
110
.
11.
Pelosi
,
M.
, and
Ivantysynova
,
M.
,
2012
, “
Heat Transfer and Thermal Elastic Deformation Analysis on the Piston/Cylinder Interface of Axial Piston Machines
,”
ASME J. Tribol.
,
134
(
4
), p.
041101
.
12.
Lv
,
Q.
,
Wang
,
D.
,
E
,
S.
,
Chen
,
H.
, and
Hu
,
B.
,
2019
, “
Study on the Effects of the Textured Surface to Improve the Performance of Cylinder Block/Valve Plate Interfaces
,”
AIP Adv.
,
9
(
4
), p.
045128
.
13.
Wang
,
Z.
,
Hu
,
S.
,
Zhang
,
H.
,
Ji
,
H.
,
Yang
,
J.
, and
Liang
,
W.
,
2018
, “
Effect of Surface Texturing Parameters on the Lubrication Characteristics of an Axial Piston Pump Valve Plate
,”
Lubricants
,
6
(
2
), p.
49
.
14.
Xing
,
Y.
,
Li
,
X.
,
Hu
,
R.
,
Long
,
X.
,
Wu
,
Z.
, and
Liu
,
L.
,
2021
, “
Numerical Analyses of Rectangular Micro-Textures in Hydrodynamic Lubrication Regime for Sliding Contacts
,”
Meccanica
,
56
(
2
), pp.
365
382
.
15.
Ivantysynova
,
M.
, and
Baker
,
J.
,
2009
, “
Power Loss in the Lubricating Gap Between Cylinder Block and Valve Plate of Swash Plate Type Axial Piston Machines
,”
Int. J. Fluid Power
,
10
(
2
), pp.
29
43
.
16.
Han
,
L.
,
Wang
,
S.
, and
Zhang
,
C.
,
2015
, “
A Partial Lubrication Model Between Valve Plate and Cylinder Block in Axial Piston Pumps
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
229
(
17
), pp.
3201
3217
.
17.
Zhang
,
C.
,
Huang
,
S.
,
Du
,
J.
,
Wang
,
X.
,
Wang
,
S.
, and
Zhang
,
H.
,
2016
, “
A New Dynamic Seven-Stage Model for Thickness Prediction of the Film Between Valve Plate and Cylinder Block in Axial Piston Pumps
,”
Adv. Mech. Eng.
,
8
(
9
), pp.
1687814016671446
.
18.
Chen
,
Y.
,
Zhang
,
J.
,
Xu
,
B.
,
Chao
,
Q.
, and
Liu
,
G.
,
2019
, “
Multi-objective Optimization of Micron-Scale Surface Textures for the Cylinder/Valve Plate Interface in Axial Piston Pumps
,”
Tribol. Int.
,
138
, pp.
316
329
.
19.
Jiang
,
J.
,
Yan
,
W.-P.
, and
Li
,
G.-Q.
,
2020
, “
Analysis on Micro-Motion of Cylinder Block Based on Elasto-Hydrodynamic Lubrication
,”
Ind. Lubr. Tribol.
,
72
(
5
), pp.
645
650
.
20.
Wang
,
T.
,
Fang
,
J.
,
Liu
,
H.
,
Chen
,
L.
,
Ouyang
,
X.
,
Guo
,
S.
,
Zhao
,
X.
, and
Lu
,
Y.
,
2022
, “
Modeling and Characteristic Analysis of a Cylinder Block/Valve Plate Interface Oil Film Model for 35 MPa Aviation Piston Pumps
,”
Machines
,
10
(
12
), pp.
1196
.
21.
Chao
,
Q.
,
2021
, “
Derivation of the Reynolds Equation in Cylindrical Coordinates Applicable to the Slipper/Swash Plate Interface in Axial Piston Pumps
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
4
), pp.
798
807
.
22.
Greenwood
,
J. A.
, and
Tripp
,
J.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
23.
Greenwood
,
J. A.
, and
Williamson
,
J. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond., A
,
295
(
1442
), pp.
300
319
.
24.
Chen
,
Z.
, and
Etsion
,
I.
,
2019
, “
The Elastic-Plastic Contact Behavior of Rough Surfaces With Hard Coatings
,”
Tribol. Int.
,
134
, pp.
435
442
.
25.
Sojoudi
,
H.
, and
Khonsari
,
M. M.
,
2009
, “
On the Modeling of Quasi-Steady and Unsteady Dynamic Friction in Sliding Lubricated Line Contact
,”
ASME J. Tribol.
,
132
(
1
), p.
012101
.
26.
Whitehouse
,
D. J.
, and
Archard
,
J.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. Lond., A
,
316
(
1524
), pp.
97
121
.
27.
Wen
,
S.
, and
Huang
,
P.
,
2012
,
Principles of Tribology
,
John Wiley & Sons
,
Hoboken, NJ
.
28.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
29.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
1999
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
30.
Zhu
,
D.
, and
Jane Wang
,
Q.
,
2011
, “
Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect
,”
ASME J. Tribol.
,
133
(
4
), p.
041001
.
31.
Jeong
,
H.-S.
, and
Kim
,
H.-E.
,
2004
, “
On the Instantaneous and Average Piston Friction of Swash Plate Type Hydraulic Axial Piston Machines
,”
KSME Int. J.
,
18
(
10
), pp.
1700
1711
.
You do not currently have access to this content.