Abstract

This study investigates the potential of utilizing industrial solid waste (blast furnace slag, ferrochrome slag, and red mud) as mold materials to improve the solidification rate and wear resistance of A319 alloy. Unlike conventional molds such as silica sand and olivine sand, industrial solid waste poses an eco-friendly alternative, contributing to waste valorization. The motivation for this research drives the need for sustainable and efficient waste management practices in the industrial sector. By exploring the utilization of industrial solid waste as a mold material, the study aims to address the current challenges in disposal, reduce environmental impact, and enhance the overall performance of A319 alloy through improved solidification and wear resistance. The experimental phase involved multi-factor reciprocating sliding wear tests conducted on a sample using a linear reciprocating tribometer, employing a steel ball as a counter face. The investigation of reciprocating wear characteristics aimed to assess the correlations between solidification rate and wear properties of a specimen cast in an industrial solid waste mold as well as a sand mold. Notably, tribological test results revealed a low wear-rate of 3.3 mg/km for the blast furnace slag mold. The scanning electron microscopy (SEM) image of the wear surface showed adhesive wear mechanisms. This study contributes valuable insights into the potential environmental and performance advantages of repurposing industrial solid waste for foundry applications.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Ye
,
H.
,
2003
, “
An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications
,”
J. Mater. Eng. Perform.
,
12
(
3
), pp.
288
297
.
2.
Vandersluis
,
E.
, and
Ravindran
,
C.
,
2018
, “
Relationships Between Solidification Parameters in A319 Aluminum Alloy
,”
J. Mater. Eng. Perform.
,
27
(
3
), pp.
1109
1121
.
3.
Hamasaiid
,
A.
,
Dargusch
,
M. S.
, and
Dour
,
G.
,
2019
, “
The Impact of the Casting Thickness on the Interfacial Heat Transfer and Solidification of the Casting During Permanent Mold Casting of an A356 Alloy
,”
J. Manuf. Processes
,
47
, pp.
229
237
.
4.
Samuel
,
F. H. S. A. M.
,
Alkahtani
,
S. A.
, and
Abuhasel
,
K.
,
2015
, “
Role of Solidification Conditions in Determining the Microstructure of Al-Si Cast Alloys
,”
Miner. Met. Mater. Soc.
, pp.
289
296
.
5.
Bala
,
K. C.
, and
Khan
,
R. H.
,
2014
, “
Rate of Solidification of Aluminium Casting in Varying Wall Thickness of Cylindrical Metallic Moulds
,”
Leonardo J. Sci.
, pp.
19
30
.
6.
Loizaga
,
A.
,
Niklas
,
A.
,
Fernandez-Calvo
,
A. I.
, and
Lacaze
,
J.
,
2009
, “
Open Archive Toulouse Archive Ouverte (OATAO) Thermal Analysis Applied to Estimation of Solidification Kinetics of Al—Si Aluminium Alloys
,”
Int. J. Cast Met. Res.
,
22
(
5
), pp.
345
352
.
7.
Dong
,
Z.
,
Hu
,
Z.
,
Yan
,
H.
,
Xie
,
H.
, and
Li
,
X.
,
2019
, “
Solidification Behavior and Microstructure of Al-7Si Alloys With Individual and Combined Additions of Sr and Yb, Adv
,”
Mater. Sci. Eng.
,
2019
, pp.
1
10
.
8.
Sales
,
R. C.
,
Felipe Junior
,
P.
,
Paradela
,
K. G.
,
Garção
,
W. J. L.
, and
Ferreira
,
A. F.
,
2018
, “
Effect of Solidification Processing Parameters and Silicon Content on the Dendritic Spacing and Hardness in Hypoeutectic Al-Si Alloys
,”
Mater. Res.
,
21
(
6
).
9.
Merkle
,
A. P.
, and
Marks
,
L. D.
,
2008
, “
Liquid-Like Tribology of Gold Studied by in Situ TEM
,”
Wear
,
265
(
11–12
), pp.
1864
1869
.
10.
Blau
,
P. J.
,
1981
, “
Mechanisms for Transitional Friction and Wear Behavior of Sliding Metals
,”
Wear
,
72
(
1
), pp.
55
66
.
11.
Dimaki
,
A. V.
,
Shilko
,
E. V.
,
Dudkin
,
I. V.
,
Psakhie
,
S. G.
, and
Popov
,
V. L.
,
2020
, “
Role of Adhesion Stress in Controlling Transition Between Plastic, Grinding and Breakaway Regimes of Adhesive Wear
,”
Sci. Rep.
,
10
(
1
), pp.
1
13
.
12.
Affatato
,
S.
, and
Brando
,
D.
,
2013
, “Introduction to Wear Phenomena of Orthopaedic Implants,”
Wear of Orthopaedic Implants and Artificial Joints
,
S.
Affatato
, ed.,
Woodhead Publishing
, pp.
3
26
.
13.
Zhang
,
H.
, and
Etsion
,
I.
,
2021
, “
Evolution of Adhesive Wear and Friction in Elastic-Plastic Spherical Contact
,”
Wear
,
478–479
, p.
203915
.
14.
Aghababaei
,
R.
,
Warner
,
D. H.
, and
Molinari
,
J. F.
,
2016
, “
Critical Length Scale Controls Adhesive Wear Mechanisms
,”
Nat. Commun.
,
7
(
1
), pp.
1
8
.
15.
Zum Gahr
,
K.-H.
,
1987
, “Chapter 4 Classification of Wear Processes,”
Microstructure and Wear of Materials
, Elsevier, Amsterdam, Vol.
08
, pp.
80
131
.
16.
Dwivedi
,
D. K.
,
2006
, “
Materials & Design Wear Behavior of Cast Hypereutectic Aluminium Silicon Alloys
,”
Mater. Des.
,
27
(
7
), pp.
610
616
.
17.
Davim
,
J. P.
,
2011
,
Tribology for Engineers: A Practical Guide
,
Woodhead Publishing
,
Cambridge
.
18.
Davim
,
J. P.
,
2017
,
Progress in Green Tribology: Green and Conventional Techniques
,
De Gruyter
,
Berlin
.
19.
Davim
,
J. P.
,
2013
,
Wear of Advanced Materials
,
John Wiley and Sons
,
Hoboken, NJ
.
20.
Katiyar
,
J. K.
,
Rao
,
T. V. V. L. N.
,
Rani
,
A. M. A.
,
Sulaiman
,
M. H.
, and
Davim
,
J. P.
,
2023
,
Tribology in Sustainable Manufacturing
,
CRC Press
,
Milton Park, UK
.
21.
Gangwar
,
V.
,
Kumar
,
S.
, and
Singh
,
H.
,
2023
, “
Tribological Behavior of AA-6063 Cast Using In Situ Microwave Process by Taguchi Method and ANFIS Model
,”
ASME J. Tribol.
,
145
(
9
), p. 091107.
22.
Soustani
,
M. F.
,
Taghiabadi
,
R.
,
Jafarzadegan
,
M.
,
Shahriyari
,
F.
, and
Rahmani
,
A.
,
2019
, “
Improving the Tribological Properties of Al-7Fe-5Ni Alloys via Friction Stir Processing
,”
ASME J. Tribol.
,
141
(
12
), p. 121602.
23.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2018
, “
Tribological Properties of Al 7075 Alloy and 7075/Al2O3 Composite Under Two-Body Abrasion : A Statistical Approach
,”
ASME J. Tribol.
,
140
(
5
), p. 051602.
24.
Kumar
,
P.
, and
Wani
,
M. F.
,
2018
, “
Tribological Characterisation of Hypereutectic Al-25Si Alloy Under Dry and Lubricated Sliding Conditions
,”
ASME J. Tribol.
,
140
(
1
), p. 011603.
25.
Aziz
,
M. A.
,
Mahmoud
,
T. S.
,
Zaki
,
Z. I.
, and
Gaafer
,
A. M.
,
2006
, “
Heat Treatment and Wear Characteristics of Al 2 O 3 and TiC Particulate Reinforced AA6063 Al Alloy Hybrid Composites
,”
ASME J. Tribol.
,
128
(
4
), pp.
891
894
.
26.
Dybowski
,
B.
,
Poloczek
,
Ł
, and
Kiełbus
,
A.
,
2016
, “
The Porosity Description in Hypoeutectic Al-Si Alloys
,”
Key Eng. Mater.
,
682
, pp.
83
90
.
27.
Shih
,
T. S.
,
Huang
,
L. W.
, and
Chen
,
Y. J.
,
2005
, “
Relative Porosity in Aluminium and in Aluminium Alloys
,”
Int. J. Cast Met. Res.
,
18
(
5
), pp.
301
308
.
28.
Moosa
,
A. A.
,
2010
, “
Microstructure and Some Properties of Aluminum-Silicon Matrix Composites Reinforced by Alumina or Chromia
,”
Al-Khwarizmi Eng. J.
,
6
(
1
), pp.
57
68
.
29.
Samavedam
,
S.
, and
Sundarrajan
,
S.
,
2016
, “
Al-Si and Al-Si-Mg Cast Alloys Shrinkage Porosity Estimation
,”
Arch. Foundry Eng.
,
16
(
1
), pp.
61
68
.
30.
Nisbeth
,
J. K.
, and
Budynas
,
R. G.
,
2011
,
Shigley's Mechanical Engineering Design
, 9th ed.,
McGraw-Hill
,
New York
.
31.
Cáceres
,
C. H.
,
Djurdjevic
,
M. B.
,
Stockwell
,
T. J.
, and
Sokolowski
,
J. H.
,
1999
, “
The Effect of Cu Content on the Level of Microporosity in Al-Si-Cu-Mg Casting Alloys
,”
Scr. Mater.
,
40
(
5
), pp.
631
637
.
32.
Rincón
,
E.
,
López
,
H. F.
,
Cisneros
,
M. M.
,
Mancha
,
H.
, and
Cisneros
,
M. A.
,
2007
, “
Effect of Temperature on the Tensile Properties of an As-Cast Aluminum Alloy A319
,”
Mater. Sci. Eng. A
,
452–453
, pp.
682
687
.
33.
Bacaicoa
,
I.
,
Dwivedi
,
P. K.
,
Luetje
,
M.
,
Zeismann
,
F.
,
Brueckner-Foit
,
A.
,
Geisert
,
A.
, and
Fehlbier
,
M.
,
2016
, “
Effect of Non-Equilibrium Heat Treatments on Microstructure and Tensile Properties of an Al-Si-Cu Alloy
,”
Mater. Sci. Eng. A
,
673
, pp.
562
571
.
34.
Li
,
Z.
,
Samuel
,
A. M.
,
Samuel
,
F. H.
,
Ravindran
,
C.
,
Valtierra
,
S.
, and
Doty
,
H. W.
,
2004
, “
Parameters Controlling the Performance of AA319-Type Alloys Part I. Tensile Properties
,”
Mater. Sci. Eng. A
,
367
(
1–2
), pp.
96
110
.
35.
Roy
,
N.
,
Samuel
,
A. M.
, and
Samuel
,
F. H.
,
1996
, “
Porosity Formation in AI-9 Wt Pct Si-3 Wt Pct Cu Alloy Systems: Metallographic Observations
,”
Metall. Mater. Trans. A
,
27
, pp.
415
429
.
36.
Puncreobutr
,
C.
,
Lee
,
P. D.
,
Kareh
,
K. M.
,
Connolley
,
T.
,
Fife
,
J. L.
, and
Phillion
,
A. B.
,
2014
, “
ScienceDirect Influence of Fe-Rich Intermetallics on Solidification Defects in Al–Si–Cu Alloys
,”
Acta Mater.
,
68
, pp.
42
51
.
37.
Ma
,
Z.
,
Samuel
,
A. M.
,
Samuel
,
F. H.
,
Doty
,
H. W.
, and
Valtierra
,
S.
,
2008
, “
A Study of Tensile Properties in Al-Si-Cu and Al-Si-Mg Alloys: Effect of β-Iron Intermetallics and Porosity
,”
Mater. Sci. Eng. A
,
490
(
1–2
), pp.
36
51
.
38.
Vandersluis
,
E.
,
2016
,
Influence of Solidification Parameters on the Thermal Conductivity of Cast A319 Aluminum Alloy
,
Ryerson University
,
Toronto
.
39.
Thompson
,
S.
,
Cockcroft
,
S. L.
, and
Wells
,
M. A.
,
2004
, “
Effect of Cooling Rate on Solidification of Aluminium Alloy AA 5182
,”
Mater. Sci. Technol.
,
20
(
4
), pp.
497
504
.
40.
Kobayashi
,
T.
,
2000
, “
Strength and Fracture of Aluminum Alloys
,”
Mater. Sci. Eng. A
,
280
(
1
), pp.
8
16
.
41.
Ceschini
,
L.
,
Morri
,
A.
,
Morri
,
A.
,
Gamberini
,
A.
, and
Messieri
,
S.
,
2009
, “
Correlation Between Ultimate Tensile Strength and Solidification Microstructure for the Sand Cast A357 Aluminium Alloy
,”
Mater. Des.
,
30
(
10
), pp.
4525
4531
.
42.
Zhou
,
B.
,
Meng
,
D. H.
,
Wu
,
D.
,
Tang
,
J. F.
,
Chen
,
R. S.
,
Li
,
P. J.
, and
Han
,
E.
,
2019
, “
Characterization of Porosity and Its Effect on the Tensile Properties of Mg-6Gd-3Y-0.5Zr Alloy
,”
Mater. Charact.
,
152
, pp.
204
212
.
43.
Tang
,
H.-P.
,
Wang
,
Q.-D.
,
Lei
,
C.
,
Wang
,
K.
,
Ye
,
B.
,
Jiang
,
H.-Y.
, and
Ding
,
W.-J.
,
2019
, “
Effect of Cooling Rate on Microstructure and Mechanical Properties of Sand-Casted Al–5.0Mg–0.6Mn–0.25Ce Alloy
,”
Acta Metall. Sin.
,
32
(
12
), pp.
1549
1564
.
44.
Yildirim
,
M.
,
Özyürek
,
D.
, and
Tunçay
,
T.
,
2017
, “
The Effects of Molding Materials on Microstructure and Wear Behavior of A356 Alloy
,”
High Temp. Mater. Processes
,
36
(
5
), pp.
515
521
.
45.
El Sebaie
,
O.
,
Samuel
,
A. M.
,
Samuel
,
F. H.
, and
Doty
,
H. W.
,
2008
, “
The Effects of Mischmetal, Cooling Rate and Heat Treatment on the Hardness of A319.1, A356.2 and A413.1 Al-Si Casting Alloys
,”
Mater. Sci. Eng. A
,
486
(
1–2
), pp.
241
252
.
46.
Ragab
,
K. A.
,
Samuel
,
A. M.
,
Al-Ahmari
,
A. M. A.
,
Samuel
,
F. H.
, and
Doty
,
H. W.
,
2011
, “
Influence of Fluidized Sand bed Heat Treatment on the Performance of Al-Si Cast Alloys
,”
Mater. Des.
,
32
(
3
), pp.
1177
1193
.
47.
Fooladi
,
S.
,
Ashrafizadeh
,
F.
,
Golozar
,
M. A.
, and
Razavi
,
S. A.
,
2019
, “
Influence of Age Hardening on Mechanical Properties of Cast Nickel-Aluminum Bronze Containing Shrinkage Porosity
,”
J. Fail. Anal. Prev.
,
19
(
5
), pp.
1498
1508
.
48.
Li
,
Y.
,
Liu
,
J.
,
Huang
,
W.
, and
Zhang
,
S.
,
2022
, “
Microstructure Related Analysis of Tensile and Fatigue Properties for Sand Casting Aluminum Alloy Cylinder Head
,”
Eng. Fail. Anal.
,
136
, p.
106210
.
49.
Williams
,
J. A.
, and
Hyncica
,
A. M.
,
1999
, “
Mechanisms of Abrasive Wear in Lubricated Contacts
,”
ASTM Spec. Tech. Publ.
, pp.
13
30
.
50.
Zhang
,
L.
,
Qu
,
X. H.
,
Duan
,
B. H.
,
He
,
X. B.
, and
Qin
,
M. L.
,
2008
, “
Effect of Porosity on Wear Resistance of SiCp/Cu Composites Prepared by Pressureless Infiltration
,”
Trans. Nonferrous Met. Soc. China
,
18
(
5
), pp.
1076
1082
.
51.
Islam
,
M. A.
, and
Farhat
,
Z. N.
,
2011
, “
Effect of Porosity on dry Sliding Wear of AlSi Alloys
,”
Tribol. Int.
,
44
(
4
), pp.
498
504
.
You do not currently have access to this content.