Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

To overcome the issues related to low-temperature characteristics and thermal degradation of fatty acid-based lubricant base stocks, chemical modification is essential. To mitigate these shortcomings, considering unsaturated undecylenic acid, the formation of estolides is one of the best transformations considering application in lubricants. Ultrasonic-assisted sulfuric acid-catalyzed synthesis of estolides of undecylenic was modeled using response surface methodology (RSM) and subsequently validated using artificial neural network (ANN) for known and unknown input variables. At optimal reaction conditions of reaction temperature of 56 °C, catalyst loading of 0.63 mol equivalent, and reaction time of 1.61 h, estolides with estolide number of 2.58, extraordinary low pour point (PP) of −52 °C, and better resistance to thermal degradation were obtained. The thermal degradation was evaluated using thermogravimetric analysis (TGA) to find improved resistance toward degradation due to the formation of estolides. Furthermore, tribological properties like wear characteristics, load carrying capacity, and oxidative stability were studied for 5% blends in SN 70 base oil. The anti-wear ability of the estolides was found to be superior to undecylenic acid, with a lower coefficient of friction, scar diameter, depth, and volume. The blend containing estolide was found to have load carrying capacity as high as 800 kgf. Moreover, owing to the double bond migration during the reaction, the oxidative stability of estolides was found to be inferior to the terminally unsaturated undecylenic acid.

References

1.
Yasa
,
S. R.
,
Cheguru
,
S.
,
Krishnasamy
,
S.
,
Korlipara
,
P. V.
,
Rajak
,
A. K.
, and
Penumarthy
,
V.
,
2017
, “
Synthesis of 10-Undecenoic Acid Based C22-Dimer Acid Esters and Their Evaluation as Potential Lubricant Basestocks
,”
Ind. Crops Prod.
,
103
, pp.
141
151
.
2.
Cavalcante
,
I. M.
,
Rocha
,
N. R. D. C.
,
de Brito
,
D. H. A.
,
Schuller
,
A. P. D.
,
Câmara Neto
,
J. F.
,
de Morais
,
S. M.
,
de Luna
,
F. M. T.
,
Schanz
,
M. T. G. F.
,
Maier
,
M. E.
, and
Ricardo
,
N. M. P. S.
,
2019
, “
Synthesis and Characterization of Novel Polyol Esters of Undecylenic Acid as Ecofriendly Lubricants
,”
J. Am. Oil Chem. Soc.
,
96
(
1
), pp.
75
82
.
3.
Bigot
,
S.
,
Daghrir
,
M.
,
Mhanna
,
A.
,
Boni
,
G.
,
Pourchet
,
S.
,
Lecamp
,
L.
, and
Plasseraud
,
L.
,
2016
, “
Undecylenic Acid: A Tunable Bio-Based Synthon for Materials Applications
,”
Eur. Polym. J.
,
74
, pp.
26
37
.
4.
Van der Steen
,
M.
, and
Stevens
,
C. V.
,
2009
, “
Undecylenic Acid: A Valuable and Physiologically Active Renewable Building Block From Castor Oil
,”
ChemSusChem
,
2
(
8
), pp.
692
713
.
5.
Ogunniyi
,
D. S.
,
2006
, “
Castor Oil: A Vital Industrial Raw Material
,”
Bioresour. Technol.
,
97
(
9
), pp.
1086
1091
.
6.
Vemullapalli
,
V.
, and
Lakkoju
,
B.
,
2023
, “
A Potential Pentaerythritol-Based Bio-lubricants From 10-Undecylenic Acid: Its Physico-Chemical Assessment
,”
J. Indian Chem. Soc.
,
100
(
6
), p.
101014
.
7.
Ahmad
,
M. U.
,
2017
,
Fatty Acids: Chemistry, Synthesis, and Applications
,
AOCS Press
,
United States
.
8.
Bart
,
J.
,
Gucciardi
,
E.
, and
Cavallaro
,
S.
,
2013
,
Biolubricants: Science and Technology
,
Woodhead Publishing
,
Cambridge, UK
.
9.
Chen
,
Y.
,
Biresaw
,
G.
,
Cermak
,
S. C.
,
Isbell
,
T. A.
,
Ngo
,
H. L.
,
Chen
,
L.
, and
Durham
,
A. L.
,
2020
, “
Fatty Acid Estolides: A Review
,”
J. Am. Oil Chem. Soc.
,
97
(
3
), pp.
231
241
.
10.
Cann
,
J. R.
, and
Amstutz
,
E. D.
,
1944
, “
Polymerization of Undecylenic Acid in the Presence of Boron Fluoride
,”
J. Am. Chem. Soc.
,
66
(
5
), pp.
839
840
.
11.
Sanap
,
P.
,
Sonawane
,
D.
,
Patil
,
S.
, and
Pratap
,
A.
,
2022
, “
Optimization of Oleic-Estolide Fatty Acid Synthesis Using Response Surface Methodology and Artificial Neural Networks
,”
Ind. Crops Prod.
,
188
(Part B), p.
115711
.
12.
Isbell
,
T. A.
,
Frykman
,
H. B.
,
Abbott
,
T. P.
,
Lohr
,
J. E.
, and
Drozd
,
J. C.
,
1997
, “
Optimization of the Sulfuric Acid-Catalyzed Estolide Synthesis From Oleic Acid
,”
J. Am. Oil Chem. Soc.
,
74
(
4
), pp.
473
476
.
13.
Terry
,
I.
,
Abbott
,
T. P.
,
Asadauskas
,
S.
, and
Lohr
,
J. E.
,
1998
, “Biodegradable Oleic Estolide Ester Base Stocks and Lubricants,” US6018063A.
14.
Hoong
,
S. S.
,
Arniza
,
M. Z.
,
Mariam
,
N. M. D. N. S.
,
Armylisas
,
A. H. N.
, and
Yeong
,
S. K.
,
2019
, “
Synthesis and Physicochemical Properties of Novel Lauric Acid Capped Estolide Esters and Amides Made From Oleic Acid and Their Evaluations for Biolubricant Basestock
,”
Ind. Crops Prod.
,
140
, p.
111653
.
15.
Cermak
,
S. C.
, and
Isbell
,
T. A.
,
2001
, “
Synthesis of Estolides From Oleic and Saturated Fatty Acids
,”
J. Am. Oil Chem. Soc.
,
78
(
6
), pp.
557
565
.
16.
Cermak
,
S. C.
, and
Isbell
,
T. A.
,
2001
, “Biodegradable Oleic Estolide Ester Having Saturated Fatty Acid End Group Useful as Lubricant Base Stock,” US6316649B1.
17.
Isbell
,
T. A.
,
Kleiman
,
R.
, and
Plattner
,
B. A.
,
1994
, “
Acid-Catalyzed Condensation of Oleic Acid Into Estolides and Polyestolides
,”
J. Am. Oil Chem. Soc.
,
71
(
2
), pp.
169
174
.
18.
Thakur
,
R.
,
Sanap
,
P.
,
Gogate
,
P.
, and
Pratap
,
A.
,
2023
, “
Ultrasound-Assisted Synthesis of Oleic Estolide: Optimization, Process Intensification and Kinetic Study
,”
Chem. Eng. Process.
,
193
, p.
109533
.
19.
Holkar
,
C. R.
,
Jadhav
,
A. J.
,
Pinjari
,
D. V.
, and
Pandit
,
A. B.
,
2019
, “
Cavitationally Driven Transformations: A Technique of Process Intensification
,”
Ind. Eng. Chem. Res.
,
58
(
15
), pp.
5797
5819
.
20.
Almasi
,
S.
,
Ghobadian
,
B.
,
Najafi
,
G.
, and
Dehghani Soufi
,
M.
,
2021
, “
A Novel Approach for Bio-lubricant Production From Rapeseed Oil-Based Biodiesel Using Ultrasound Irradiation: Multi-Objective Optimization
,”
Sustain. Energy Technol. Assess.
,
43
, p.
100960
.
21.
Patience
,
N. A.
,
Galli
,
F.
,
Rigamonti
,
M. G.
,
Schieppati
,
D.
, and
Boffito
,
D. C.
,
2019
, “
Ultrasonic Intensification to Produce Diester Biolubricants
,”
Ind. Eng. Chem. Res.
,
58
(
19
), pp.
7957
7963
.
22.
Arumugam
,
S.
,
Chengareddy
,
P.
, and
Sriram
,
G.
,
2018
, “
Synthesis, Characterisation and Tribological Investigation of Vegetable Oil-Based Pentaerythryl Ester as Biodegradable Compressor Oil
,”
Ind. Crops Prod.
,
123
, pp.
617
628
.
23.
Arumugam
,
S.
,
Chengareddy
,
P.
,
Tamilarasan
,
A.
, and
Santhanam
,
V.
,
2019
, “
RSM and Crow Search Algorithm-Based Optimization of Ultrasonicated Transesterification Process Parameters on Synthesis of Polyol Ester-Based Biolubricant
,”
Arab. J. Sci. Eng.
,
44
(
6
), pp.
5535
5548
.
24.
Nandiwale
,
K. Y.
,
Yadava
,
S. K.
, and
Bokade
,
V. V.
,
2014
, “
Production of Octyl Levulinate Biolubricant Over Modified H-ZSM-5: Optimization by Response Surface Methodology
,”
J. Energy Chem.
,
23
(
4
), pp.
535
541
.
25.
Derawi
,
D.
,
2016
, “
Experimental Design Using Response Surface Methods for Palm Olein-Based Hydroxy-Ether Synthesis
,”
Sains Malaysiana
,
45
(
7
), pp.
1149
1154
. https://journalarticle.ukm.my/9990/1/18
26.
Nandiwale
,
K. Y.
, and
Bokade
,
V. V.
,
2016
, “
Optimization by Box-Behnken Experimental Design for Synthesis of n-Hexyl Levulinate Biolubricant Over Hierarchical H-ZSM-5: An Effort Towards Agricultural Waste Minimization
,”
Process Saf. Environ. Prot.
,
99
, pp.
159
166
.
27.
Ocholi
,
O.
,
Menkiti
,
M.
,
Auta
,
M.
, and
Ezemagu
,
I.
,
2018
, “
Optimization of the Operating Parameters for the Extractive Synthesis of Biolubricant From Sesame Seed Oil Via Response Surface Methodology
,”
Egypt. J. Pet.
,
27
(
3
), pp.
265
275
.
28.
Wang
,
G.
, and
Sun
,
S.
,
2017
, “
Synthesis of Ricinoleic Acid Estolides by the Esterification of Ricinoleic Acids Using Functional Acid Ionic Liquids as Catalysts
,”
J. Oleo Sci.
,
66
(
7
), pp.
753
759
.
29.
Gul
,
M.
,
Zulkifli
,
N. W. M.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
,
Mujtaba
,
M. A.
,
Yousuf
,
S.
,
Bashir
,
M. N.
, et al
,
2021
, “
RSM and Artificial Neural Networking Based Production Optimization of Sustainable Cotton Bio-lubricant and Evaluation of Its Lubricity & Tribological Properties
,”
Energy Rep.
,
7
, pp.
830
839
.
30.
Hajar
,
M.
, and
Vahabzadeh
,
F.
,
2014
, “
Artificial Neural Network Modeling of Biolubricant Production Using Novozym 435 and Castor Oil Substrate
,”
Ind. Crops Prod.
,
52
, pp.
430
438
.
31.
Paul
,
A. K.
,
Borugadda
,
V. B.
,
Bhalerao
,
M. S.
, and
Goud
,
V. V.
,
2018
, “
In Situ Epoxidation of Waste Soybean Cooking Oil for Synthesis of Biolubricant Basestock: A Process Parameter Optimization and Comparison With RSM, ANN, and GA
,”
Can. J. Chem. Eng.
,
96
(
7
), pp.
1451
1461
.
32.
Pomeroy
,
B.
,
Grilc
,
M.
, and
Likozar
,
B.
,
2022
, “
Artificial Neural Networks for Bio-based Chemical Production or Biorefining: A Review
,”
Renew. Sustain. Energy Rev.
,
153
, p.
111748
.
33.
Masuko
,
M.
,
Ohmori
,
T.
, and
Okabe
,
H.
,
1988
, “
Anti-Wear Properties of Hydroxycarboxylic Acids With Straight Alkyl Chains
,”
Tribol. Int.
,
21
(
4
), pp.
199
203
.
34.
De Barros Bouchet
,
M. I.
,
Martin
,
J. M.
,
Forest
,
C.
,
Le Mogne
,
T.
,
Mazarin
,
M.
,
Avila
,
J.
,
Asensio
,
M. C.
, and
Fisher
,
G. L.
,
2017
, “
Tribochemistry of Unsaturated Fatty Acids as Friction Modifiers in (Bio)Diesel Fuel
,”
RSC Adv.
,
7
(
53
), pp.
33120
33131
.
35.
Loehle
,
S.
,
Matta
,
C.
,
Minfray
,
C.
,
Mogne
,
T. L.
,
Martin
,
J. M.
,
Iovine
,
R.
,
Obara
,
Y.
,
Miura
,
R.
, and
Miyamoto
,
A.
,
2014
, “
Mixed Lubrication With C18 Fatty Acids: Effect of Unsaturation
,”
Tribol. Lett.
,
53
(
1
), pp.
319
328
.
36.
Cao
,
Y.
,
Yu
,
L.
, and
Liu
,
W.
,
2000
, “
Study of the Tribological Behavior of Sulfurized Fatty Acids as Additives in Rapeseed Oil
,”
Wear
,
244
(
1–2
), pp.
126
131
.
37.
Gandhi
,
S. S.
, and
Gogate
,
P. R.
,
2021
, “
Process Intensification of Fatty Acid Ester Production Using Esterification Followed by Transesterification of High Acid Value Mahua (Lluppai Ennai) Oil: Comparison of the Ultrasonic Reactors
,”
Fuel
,
294
, p.
120560
.
38.
Eychenne
,
V.
, and
Mouloungui
,
Z.
,
1998
, “
Relationships Between Structure and Lubricating Properties of Neopentylpolyol Esters
,”
Ind. Eng. Chem. Res.
,
37
(
12
), pp.
4835
4843
.
39.
Nutui
,
R.
,
Maties
,
M.
, and
Nutui
,
M.
,
1990
, “
Correlations Between the Structure, Physical and Rheological Properties in the Class of Neopentylpolyol Esters Used as Lubricating Oils
,”
J. Synth. Lubr.
,
7
(
2
), pp.
145
154
.
40.
Geyikçi
,
F.
,
Kılıç
,
E.
,
Çoruh
,
S.
, and
Elevli
,
S.
,
2012
, “
Modelling of Lead Adsorption From Industrial Sludge Leachate on Red Mud by Using RSM and ANN
,”
Chem. Eng. J.
,
183
, pp.
53
59
.
41.
García-Zapateiro
,
L. A.
,
Franco
,
J. M.
,
Valencia
,
C.
,
Delgado
,
M. A.
, and
Gallegos
,
C.
,
2013
, “
Viscous, Thermal and Tribological Characterization of Oleic and Ricinoleic Acids-Derived Estolides and Their Blends With Vegetable Oils
,”
J. Ind. Eng. Chem.
,
19
(
4
), pp.
1289
1298
.
42.
Reeves
,
C. J.
,
Menezes
,
P. L.
,
Jen
,
T. C.
, and
Lovell
,
M. R.
,
2015
, “
The Influence of Fatty Acids on Tribological and Thermal Properties of Natural Oils as Sustainable Biolubricants
,”
Tribol. Int.
,
90
, pp.
123
134
.
43.
Lundgren
,
S. M.
,
Ruths
,
M.
,
Danerlöv
,
K.
, and
Persson
,
K.
,
2008
, “
Effects of Unsaturation on Film Structure and Friction of Fatty Acids in a Model Base Oil
,”
J. Colloid Interface Sci.
,
326
(
2
), pp.
530
536
.
44.
Furey
,
M. J.
,
1973
, “
The Formation of Polymeric Films Directly on Rubbing Surfaces to Reduce Wear
,”
Wear
,
26
(
3
), pp.
369
392
.
45.
Hu
,
Z.
,
Tao
,
D.
, and
Wang
,
R.-L.
,
1995
, “
Functional Mechanism of Formation of Friction Polymer With Dihydroxydocosanoic Acid
,”
Lubr. Sci.
,
7
(
3
), pp.
285
290
.
46.
Hernández-Sierra
,
M. T.
,
Aguilera-Camacho
,
L. D.
,
Báez-García
,
J. E.
,
García-Miranda
,
J. S.
, and
Moreno
,
K. J.
,
2018
, “
Thermal Stability and Lubrication Properties of Biodegradable Castor Oil on AISI 4140 Steel
,”
Metals
,
8
(
6
), p.
428
.
47.
Ponomarenko
,
A. G.
,
Chigarenko
,
G. G.
, and
Barchan
,
G. P.
,
1981
, “
Mechanism of Formation of Friction Polymers in Lubricating Oils
,”
Chem. Technol. Fuels Oils
,
17
(
9
), pp.
534
537
.
48.
Chan
,
C. H.
,
Tang
,
S. W.
,
Mohd
,
N. K.
,
Lim
,
W. H.
,
Yeong
,
S. K.
, and
Idris
,
Z.
,
2018
, “
Tribological Behavior of Biolubricant Base Stocks and Additives
,”
Renew. Sustain. Energy Rev.
,
93
, pp.
145
157
.
49.
Gupta
,
M. K.
,
Bijwe
,
J.
, and
Kadiyala
,
A. K.
,
2018
, “
Tribo-Investigations on Oils With Dispersants and Hexagonal Boron Nitride Particles
,”
ASME J. Tribol.
,
140
(
3
), p.
031801
.
50.
Sukjit
,
E.
,
Poapongsakorn
,
P.
,
Dearn
,
K. D.
,
Lapuerta
,
M.
, and
Sánchez-Valdepeñas
,
J.
,
2017
, “
Investigation of the Lubrication Properties and Tribological Mechanisms of Oxygenated Compounds
,”
Wear
,
376–377
(Part A), pp.
836
842
.
51.
Zeng
,
Q.
,
2021
, “
The Lubrication Performance and Viscosity Behavior of Castor Oil Under High Temperature
,”
Green Mater.
,
10
(
2
), pp.
51
58
.
52.
Akhmatov
,
A.
,
1966
,
Molecular Physics of Boundary Friction
,
Israel Program for Scientific Translations
,
Jerusalem
.
53.
Fereidoon
,
S.
, and
Ying
,
Z.
,
2010
, “
Lipid Oxidation and Improving the Oxidative Stability
,”
Chem. Soc. Rev.
,
39
(
11
), pp.
4067
4079
.
54.
Ghosh
,
P.
,
Hoque
,
M.
, and
Karmakar
,
G.
,
2018
, “
Castor Oil as Potential Multifunctional Additive in the Formulation of Eco-Friendly Lubricant
,”
Polym. Bull.
,
75
(
2
), pp.
501
514
.
55.
Karmakar
,
G.
,
Dey
,
K.
,
Ghosh
,
P.
,
Sharma
,
B. K.
, and
Erhan
,
S. Z.
,
2021
, “
A Short Review on Polymeric Biomaterials as Additives for Lubricants
,”
Polymers
,
13
(
8
), p.
1333
.
56.
Ghosh
,
P.
, and
Karmakar
,
G.
,
2014
, “
Evaluation of Sunflower Oil as a Multifunctional Lubricating Oil Additive
,”
Int. J. Ind. Chem.
,
5
(
1
), pp.
1
10
.
57.
Karmakar
,
G.
,
Ghosh
,
P.
, and
Sharma
,
B. K.
,
2017
, “
Chemically Modifying Vegetable Oils to Prepare Green Lubricants
,”
Lubricants
,
5
(
4
), p.
44
.
58.
Syahir
,
A. Z.
,
Zulkifli
,
N. W. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Alabdulkarem
,
A.
,
Gulzar
,
M.
,
Khuong
,
L. S.
, and
Harith
,
M. H.
,
2017
, “
A Review on Bio-based Lubricants and Their Applications
,”
J. Clean. Prod.
,
168
, pp.
997
1016
.
59.
Biresaw
,
G.
, and
Bantchev
,
G. B.
,
2013
, “
Tribological Properties of Biobased Ester Phosphonates
,”
J. Am. Oil Chem. Soc.
,
90
(
6
), pp.
891
902
.
60.
Kotte
,
K.
,
Azmeera
,
T.
,
Prasad
,
R. B. N.
, and
Karuna
,
M. S. L.
,
2023
, “
Vegetable Oil-Based Ethanolamides as Potential Anti-oxidant Additives for Lubricant Formulations
,”
Indian J. Chem.
,
62
(
9
), pp.
921
930
.
61.
Ding
,
H.
,
Yang
,
X.
,
Xu
,
L.
,
Li
,
M.
,
Li
,
S.
,
Zhang
,
S.
, and
Xia
,
J.
,
2020
, “
Analysis and Comparison of Tribological Performance of Fatty Acid-Based Lubricant Additives With Phosphorus and Sulfur
,”
J. Bioresour. Bioprod.
,
5
(
2
), pp.
134
142
.
62.
Rajendiran
,
A.
,
Sumathi
,
A.
,
Krishnasamy
,
K.
,
Kabilan
,
S.
, and
Ganguli
,
D.
,
2016
, “
Antiwear Study on Petroleum Base Oils With Esters
,”
Tribol. Int.
,
99
, pp.
47
56
.
You do not currently have access to this content.