Abstract

The Compliant foil cylindrical gas film seal is an advanced sealing technology designed for high-speed and high-temperature conditions in a jet engine. Its design involves using a compliant foil to create a cylindrical sealing surface, achieving adaptive sealing in environments with high pressure differences and rotational speeds. For high-speed and high-temperature operation, a speed slip flow model was established by considering film slip flow, wall temperature jump, foil deformation, and gas viscosity-temperature thermal effects. The variations in the lubrication performance of the foil cylindrical gas film seal with changes in shaft misalignment directions, misalignment angles, and operating parameters were investigated. The speed slip leads to a decrease in gas film lift and an increase in leakage. The wall temperature jump phenomenon caused by speed slip leads to a 2.56% decrease in film temperature. The shaft misalignment angles on the high-pressure and low-pressure sides have different impacts on the flow field, with film pressure and temperature differing by 66.78% and 11.19%, respectively.

References

1.
Jiang
,
J. B.
,
Peng
,
X. D.
,
Li
,
J. Y.
, and
Chen
,
Y.
,
2018
, “
Leakage and Stiffness Characteristics of Bionic Cluster Spiral Groove dry gas Seal
,”
Chin. J. Mech. Eng.
,
31
(
21
), pp.
1
11
.
2.
Chen
,
Y.
,
Zhuo
,
Z.
,
Li
,
Y.
,
Li
,
X.
,
Wang
,
B.
,
Jin
,
J.
, and
Zhang
,
C.
,
2024
, “
Prediction of Spiral Groove dry gas Seal Performance and Intelligent Optimization of Structural Parameters
,”
Tribol. Int.
,
193
, p.
109439
.
3.
Chen
,
Y.
,
Xiong
,
C.
,
Li
,
Y.
,
Li
,
X.
,
Xue
,
X.
,
Wang
,
B.
, and
Gan
,
Y.
,
2023
, “
Dynamic Performance Analysis and Parameter Collaborative Optimization of Floating Seal dam Compliant Foil Face gas Seal
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
12
), p.
612
.
4.
Chen
,
Y.
,
Wang
,
Q. G.
,
Peng
,
X. D.
,
Li
,
Y. T.
,
Wang
,
B. Q.
, and
Jin
,
J.
,
2022
, “
Flow Field and Sealing Performance Analysis of Compliant Foil Face gas Seal
,”
Adv. Mech. Eng.
,
14
(
6
), pp.
1
16
.
5.
Jia
,
X.
,
Zheng
,
Q.
,
Jiang
,
Y.
, and
Zhang
,
H.
,
2019
, “
Leakage and Rotordynamic Performance of T Type Labyrinth Seal
,”
Aerosp. Sci. Technol.
,
88
, pp.
22
31
.
6.
Outirba
,
B.
, and
Hendrick
,
P.
,
2020
, “
Experimental Characterization of Friction and Heat Generation of Carbon Fibre Brush Seals for Aero-Engines
,”
Tribol. Int.
,
151
, p.
106448
.
7.
Li
,
G. Q.
,
Zhang
,
Q.
,
Huang
,
E. L.
,
Lei
,
Z. J.
,
Wu
,
H. W.
, and
Xu
,
G.
,
2019
, “
Leakage Performance of Floating Ring Seal in Cold/hot State for Aero-Engine
,”
Chin. J. Aeronaut.
,
32
(
9
), pp.
2085
2094
.
8.
Salehi
,
M.
,
Heshmat
,
H.
,
Walton
,
J. F.
, and
Cruszen
,
S.
,
1999
, “
The Application of Foil Seals to a gas Turbine Engine
,”
35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Los Angeles, CA
,
June 20–24
.
9.
Salehi
,
M.
, and
Heshmat
,
H.
,
2001
, “
Performance of a Complaint Foil Seal in a Small gas Turbine Engine Simulator Employing a Hybrid Foil/Ball Bearing Support System
,”
Tribol. Trans.
,
44
(
3
), pp.
458
464
.
10.
Salehi
,
M.
, and
Heshmat
,
H.
,
2002
, “
Evaluation of Large Compliant gas Foil Seals Under Engine Simulated Conditions
,”
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Indianapolis, IN
,
July 7–10
.
11.
Salehi
,
M.
, and
Heshmat
,
H.
,
2000
, “
On the Fluid Flow and Thermal Analysis of a Compliant Surface Foil Bearing and Seal
,”
Tribol. Trans.
,
43
(
2
), pp.
318
324
.
12.
Salehi
,
M.
, and
Heshmat
,
H.
,
2000
, “
High Temperature Performance Evaluation of a Compliant Foil Seal
,”
36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Las Vegas, NV
,
July 24–28
.
13.
Zhang
,
S.
, and
Bogy
,
D. B.
,
1999
, “
A Heat Transfer Model for Thermal Fluctuations in a Thin Slider/Disk air Bearing
,”
Int. J. Heat Mass Transfer
,
42
(
10
), pp.
1791
1800
.
14.
Thomas
,
S.
,
Brunetière
,
N.
, and
Tournerie
,
B.
,
2007
, “
Thermoelastohydrodynamic Behavior of Mechanical gas Face Seals Operating at High Pressure
,”
ASME J. Tribol.
,
129
(
4
), pp.
841
850
.
15.
Ding
,
X. X.
, and
Lu
,
J. J.
,
2016
, “
Theoretical Analysis and Experiment on gas Film Temperature in a Spiral Groove dry gas Seal Under High Speed and Pressure
,”
Int. J. Heat Mass Transfer
,
96
, pp.
438
450
.
16.
Bai
,
S. X.
,
Peng
,
X. D.
,
Meng
,
Y. G.
, and
Wen
,
S. Z.
,
2012
, “
Modeling of gas Thermal Effect Based on Energy Equipartition Principle
,”
Tribol. Trans.
,
55
(
6
), pp.
752
761
.
17.
Zhang
,
X. Q.
,
Chen
,
Q. H.
, and
Liu
,
J. F.
,
2017
, “
Steady Characteristics of High-Speed Micro-gas Journal Bearings With Different Gaseous Lubricants and Extreme Temperature Difference
,”
ASME J. Tribol.
,
139
(
2
), p.
021703
.
18.
Salehi
,
M.
,
Swanson
,
E.
, and
Heshmat
,
H.
,
2001
, “
Thermal Features of Compliant Foil Bearings–Theory and Experiments
,”
ASME J. Tribol.
,
123
(
3
), pp.
566
571
.
19.
Peng
,
Z.
, and
Khonsari
,
M. M.
,
2006
, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
534
541
.
20.
Lee
,
D.
, and
Kim
,
D.
,
2010
, “
Thermohydrodynamic Analyses of Bump air Foil Bearings with Detailed Thermal Model of Foil Structures and Rotor
,”
ASME J. Tribol.
,
132
(
2
), p.
021704
.
21.
Sim
,
K.
, and
Kim
,
T. H.
,
2012
, “
Thermohydrodynamic Analysis of Bump-Type gas Foil Bearings Using Bump Thermal Contact and Inlet Flow Mixing Models
,”
Tribol. Int.
,
48
, pp.
137
148
.
22.
Feng
,
K.
, and
Kaneko
,
S.
,
2008
, “
A Study of Thermohydrodynamic Features of Multi Wound Foil Bearing Using Lobatto Point Quadrature
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13, 2008
, pp.
911
922
. Structures and Dynamics, Parts A and B, 5.
23.
Burgdorfer
,
A.
,
1959
, “
The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic gas Lubricated Bearings
,”
ASME J. Basic Eng.
,
81
(
1
), pp.
94
98
.
24.
Hisa
,
Y.-T.
, and
Domoto
,
G. A.
,
1983
, “
An Experimental Investigation of Molecular Rarefaction Effects in gas Lubricated Bearings at Ultra-low Clearances
,”
ASME J. Lubr. Technol.
,
105
(
1
), pp.
120
129
.
25.
Mitsuya
,
Y.
,
1993
, “
Modified Reynolds Equation for Ultra-Thin Film gas Lubrication Using 1.5-Order Slip-Flow Model and Considering Surface Accommodation Coefficient
,”
ASME J. Tribol.
,
115
(
2
), pp.
289
294
.
26.
Fukui
,
S.
, and
Kaneko
,
R.
,
1990
, “
A Database for Interpolation of Poiseuille Flow Rates for High Knudsen Number Lubrication Problems
,”
ASME J. Tribol.
,
112
(
1
), pp.
78
83
.
27.
Fukui
,
S.
, and
Kaneko
,
R.
,
1987
, “
Analysis of Ultra-Thin gas Film Lubrication Based on the Linearized Boltzmann Equation : Influence of Accommodation Coefficient
,”
JSME Int. J.
,
30
(
268
), pp.
1660
1666
.
28.
Fukui
,
S.
, and
Kaneko
,
R.
,
1988
, “
Analysis of Ultra-Thin gas Film Lubrication Based on Linearized Boltzmann Equation: First Report—Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow
,”
ASME J. Tribol.
,
110
(
2
), pp.
253
261
.
29.
Feng
,
K.
, and
Zhao
,
X. Y.
,
2015
, “
Effects of Misalignment on the Structure Characteristics of Bump-Type Foil Bearings: A Comparison Between Experimental and Theoretical Results
,”
Ind. Lubr. Tribol.
,
67
(
4
), pp.
370
379
.
30.
Zhao
,
X.
, and
Xiao
,
S.
,
2012
, “
A Three-Dimensional Model of gas Foil Bearings and the Effect of Misalignment on the Static Performance of the First and Second Generation Foil Bearings
,”
Tribol. Int.
,
156
, p.
106821
.
31.
Yan
,
J. J.
,
Zhang
,
G. H.
,
Liu
,
Z. S.
,
Zhao
,
J. M.
, and
Xu
,
L.
,
2018
, “
Performance of a Novel Foil Journal Bearing With Surface Micro-Grooved top Foil
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
232
(
9
), pp.
1126
1139
.
32.
Kennard
,
E. H.
,
1938
,
Kinetic Theory of Gases
,
McGraw-Hill
,
New York
.
33.
Wu
,
Y.
,
Xi
,
W. J.
,
Zhang
,
C. L.
,
Cao
,
J. J.
, and
Yang
,
L. H.
,
2022
, “
Thermohydrodynamic Lubrication Analysis of Micro gas Bearing with Journal Misalignment
,”
J. Aerosp. Power
,
37
(
9
), pp.
1979
1991
.
34.
Li
,
B.
,
Sun
,
J.
,
Zhu
,
S.
,
Fu
,
Y.
,
Zhao
,
X.
,
Wang
,
H.
,
Teng
,
Q.
,
Ren
,
Y.
,
Li
,
Y.
, and
Zhu
,
G.
,
2019
, “
Thermohydro-Dynamic Lubrication Analysis of Misaligned Journal Bearing Considering the Axial Movement of Journal
,”
Tribol. Int.
,
135
, pp.
397
407
.
35.
Rogers
,
G. F. C.
, and
Mayhew
,
Y. R.
,
1967
,
Engineering Thermodynamics: Work and Heat Transfer
,
Longman
,
Hong Kong, China
.
36.
Eckert
,
E. R. G.
, and
Drake, Jr.
,
R. M.
,
1987
,
Analysis of Heat and Mass Transfer
,
Hemisphere
,
Carlsbad, USA
.
37.
Le
,
N. T. P.
,
White
,
C.
,
Reese
,
J. M.
, and
Myong
,
R. S.
,
2012
, “
Langmuir–Maxwell and Langmuir–Smoluchowski Boundary Conditions for Thermal gas Flow Simulations in Hypersonic Aerodynamics
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5032
5043
.
38.
Zhang
,
K.
,
Zhao
,
X. Y.
,
Feng
,
K.
, and
Zhao
,
Z. L.
,
2018
, “
Thermohydrodynamic Analysis and Thermal Management of Hybrid Bump–Metal Mesh Foil Bearings: Experimental Tests and Theoretical Predictions
,”
Int. J. Therm. Sci.
,
127
, pp.
91
104
.
39.
Chen
,
T.
, and
Liu
,
M. H.
,
2014
, “
Effects of Operating Parameters on the Seal Performance of Cylindrical gas Film
,”
Fluid Mach.
,
42
(
12
), pp.
43
46
.
You do not currently have access to this content.