Abstract

AISI D3 cold-work steel was shallow and deep cryogenically treated and double-tempered at 150, 250, and 350 °C temperatures. Cryogenic processes transformed the retained austenite into martensite, while double tempering produced Fe-, Cr-, and W-rich carbides. The wear losses of cryogenically treated specimens decreased by up to 60% compared to conventionally heat-treated samples. Worn surfaces mainly experienced abrasive and adhesive wear mechanisms. Due to the formation of homogeneously dispersed fine carbides at 250 °C, oxidative wear occurred at the matrix phase, resulting in the lowest wear rate. The samples tempered at 150 °C suffered from the severe abrasive action of hard carbide particles, while the samples treated at 350 °C failed because of carbide coarsening.

References

1.
Kara
,
F.
,
Küçük
,
Y.
,
Özbek
,
O.
,
Özbek
,
N. A.
,
Gök
,
M. S.
,
Altaş
,
E.
, and
Uygur
,
İ
,
2023
, “
Effect of Cryogenic Treatment on Wear Behavior of Sleipner Cold Work Tool Steel
,”
Tribol. Int.
,
180
(
2
), p.
108301
.
2.
Ahmadi
,
M.
,
Mirzaee
,
O.
,
Azadi
,
M.
, and
Biukani
,
H.
,
2023
, “
Effects of Various Double-Quenching Treatments on the Microstructure and Corrosion Properties of D2 Tool Steel
,”
Int. J. Pressure Vessels Pip.
,
202
(
2
), p.
104915
.
3.
Aslan
,
E.
,
2005
, “
Experimental Investigation of Cutting Tool Performance in High Speed Cutting of Hardened X210 Cr12 Cold-Work Tool Steel (62 HRC)
,”
Mater. Des.
,
26
(
1
), pp.
21
27
.
4.
Kaplan
,
Y.
,
Motorcu
,
A. R.
,
Nalbant
,
M.
, and
Okay
,
Ş
,
2015
, “
The Effects of Process Parameters on Acceleration Amplitude in the Drilling of Cold Work Tool Steels
,”
Int. J. Adv. Manuf. Technol.
,
80
(
5–8
), pp.
1387
1401
.
5.
Uygur
,
I.
,
Gerengi
,
H.
,
Arslan
,
Y.
, and
Kurtay
,
M.
,
2015
, “
The Effects of Cryogenic Treatment on the Corrosion of AISI D3 Steel
,”
Mater. Res.
,
18
(
3
), pp.
569
574
.
6.
Katoch
,
S.
,
Sehgal
,
R.
, and
Singh
,
V.
,
2016
, “
Effect of Cryogenic Treatment on the Tribological Behaviour of H11 Hot Die Steel Dry Sliding Against D3 Steel
,”
Tribol.—Mater. Surf. Interfaces
,
10
(
4
), pp.
185
195
.
7.
Kuriachen
,
B.
,
Vinay
,
K.
, and
Joshy
,
J.
,
2024
, “
Influence of Post-Processing and Build Direction on the Wear Behavior of Laser Powder Bed Fused Maraging Steel
,”
ASME J. Tribol.
,
146
(
10
), p.
104201
.
8.
Liao
,
J.
,
Li
,
L.
,
Peng
,
J.
, and
Gao
,
J.
,
2020
, “
Effects of Deep Cryogenic Treatment on the Microstructure and Friction Performance of M35 High-Speed Steel
,”
J. Phys.: Conf. Ser.
1676
(
1
), p.
012098
.
9.
Mavi
,
A.
,
Kaplan
,
Y.
, and
Aksoz
,
S.
,
2021
, “
Effects of Aging and Deep Cryogenic Treatment on Wear Behavior of Al7075 Alloy
,”
ASME J. Tribol.
,
143
(
12
), p.
121702
.
10.
Thornton
,
R.
,
Slatter
,
T.
,
Jones
,
A. H.
, and
Lewis
,
R.
,
2011
, “
The Effects of Cryogenic Processing on the Wear Resistance of Grey Cast Iron Brake Discs
,”
Wear
,
271
(
9–10
), pp.
2386
2395
.
11.
Kumar
,
S.
,
Nagaraj
,
M.
,
Khedkar
,
N. K.
, and
Bongale
,
A.
,
2018
, “
Influence of Deep Cryogenic Treatment on Dry Sliding Wear Behaviour of AISI D3 Die Steel
,”
Mater. Res. Express
,
5
(
11
), p.
116525
.
12.
Saad Ghazi
,
S.
, and
Mijbel Mashloosh
,
K.
,
2015
, “
Influence of Heat Treatment on Resistance of Wear and Mechanical Properties of Die Steel Kind D3
,”
Am. J. Sci. Ind. Res.
5
(
2
), pp.
33
40
.
13.
Akhbarizadeh
,
A.
,
Amini
,
K.
, and
Javadpour
,
S.
,
2012
, “
Effects of Applying an External Magnetic Field During the Deep Cryogenic Heat Treatment on the Corrosion Resistance and Wear Behavior of 1.2080 Tool Steel
,”
Mater. Des.
,
41
(
9
), pp.
114
123
.
14.
Dhokey
,
N.
,
Dhokey
,
N. B.
,
Hake
,
A. R.
,
Thavale
,
V. T.
,
Gite
,
R.
, and
Batheja
,
R.
,
2014
.
Microstructure and Mechanical Properties of Cryotreated SAE8620 and D3 Steels
.
Curr. Adv. Mater. Sci. Res.
1
(
1
),
23
37
.
15.
Essam
,
M. A.
,
Shash
,
A. Y.
,
El-Fawakhry
,
M. K.
,
El-Kashif
,
E.
, and
Megahed
,
H.
,
2023
, “
Effect of Deep Cryogenic Treatment on Wear Behavior of Cold Work Tool Steel
,”
Metals (Basel)
,
13
(
2
), p.
382
.
16.
Dhokey
,
N. B.
, and
Nirbhavne
,
S.
,
2009
, “
Dry Sliding Wear of Cryotreated Multiple Tempered D-3 Tool Steel
,”
J. Mater. Process Technol.
,
209
(
3
), pp.
1484
1490
.
17.
Qiao
,
X.
,
Han
,
L.
,
Zhang
,
W.
, and
Gu
,
J.
,
2016
, “
Thermal Stability of Retained Austenite in High-Carbon Steels During Cryogenic and Tempering Treatments
,”
ISIJ Int.
,
56
(
1
), pp.
140
147
.
18.
Adzali
,
N. M. S.
,
Khapeli
,
N. A. M.
, and
Mohamed
,
A. R.
,
2024
, “
Microstructural and Corrosion Behavior of D3 Tools Steel and 440C SS for Blade Application
,”
Adv. Mater. Res. (South Korea)
,
13
(
3
), pp.
183
194
.
19.
Mochtar
,
M. A.
,
Putra
,
W. N.
, and
Abram
,
M.
,
2023
, “
Effect of Tempering Temperature and Subzero Treatment on Microstructures, Retained Austenite, and Hardness of AISI D2 Tool Steel
,”
Mater. Res. Express
,
10
(
5
), p.
056511
.
20.
Momeni
,
M.
,
Kheirandish
,
S.
,
Saghafian
,
H.
,
Hedjazi
,
J.
, and
Momeni
,
M.
,
2014
, “
Effects of Heat Treatment on Mechanical Properties of Modified Cast AISI D3 Tool Steel
,”
Mater. Des.
,
54
(
2
), pp.
742
747
.
21.
Das
,
D.
,
Dutta
,
A. K.
, and
Ray
,
K. K.
,
2009
, “
On the Refinement of Carbide Precipitates by Cryotreatment in AISI D2 Steel
,”
Philos. Mag.
,
89
(
1
), pp.
55
76
.
22.
Moscoso
,
M. F. C.
,
Ramos
,
F. D.
,
de Lima Lessa
,
C. R.
,
Cunha
,
P. H. C. P.
,
Toniolo
,
J. C.
, and
Lemos
,
G. V. B.
,
2020
, “
Effects of Cooling Parameter and Cryogenic Treatment on Microstructure and Fracture Toughness of AISI D2 Tool Steel
,”
J. Mater. Eng. Perform.
,
29
(
12
), pp.
7929
7939
.
23.
Tóth
,
L.
, and
Fábián
,
E. R.
,
2019
, “
The Effects of Quenching and Tempering Treatment on the Hardness and Microstructures of a Cold Work Steel
,”
Int. J. Eng. Manage. Sci.
,
4
(
1), pp.
286
294
.
24.
Wieczerzak
,
K.
,
BaŁa
,
P.
,
Stępień
,
M.
,
Cios
,
G.
, and
KozieŁ
,
T.
,
2015
, “
The Characterization of Cast Fe-Cr-C Alloy
,”
Arch. Metall. Mater.
,
60
(
2A
), pp.
779
782
.
25.
Surberg
,
C. H.
,
Stratton
,
P. F.
, and
Lingenhole
,
K.
,
2009
, “
The Effect of Cryogenic Treatment on the Properties of AISI D2
,”
Mater. Manuf. Processes
,
24
(
7–8
), pp.
863
867
.
26.
Kaya
,
E.
,
Kılıçay
,
K.
, and
Ulutan
,
M.
,
2020
, “
Microstructure and Tribological Properties of Tool Steel AISI O2 After Thorough Cryogenic Heat Treatment
,”
Met. Sci. Heat Treat.
,
62
(
5–6
), pp.
399
404
.
27.
Jurči
,
P.
,
Yarasu
,
V.
,
Dlouhý
,
I.
, and
Bartkowska
,
A.
,
2023
, “
Optimization of Wear-, Fracture- and Corrosion Performance of Vanadis 6 Steel Through Cryogenic Treatment and Tempering
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
1284
(
1
), p.
012086
.
28.
López-Leyva
,
A.
,
Rosales-Lopez
,
J. L.
,
Campos-Silva
,
I.
,
Šulhánek
,
P.
,
Gogola
,
P.
,
Dománková
,
M.
,
Ptačinová
,
J.
,
Dlouhý
,
I.
, and
Jurči
,
P.
,
2024
, “
Microstructure—Fracture Toughness Relationship in a Sub-Zero Treated 0.9C-7.8Cr Sub-Ledeburitic Tool Steel
,”
Theor. Appl. Fract. Mec.
,
134
(
6
), p.
104670
.
29.
Gecu
,
R.
,
2022
, “
Combined Effects of Cryogenic Treatment and Tempering on Microstructural and Tribological Features of AISI H13 Steel
,”
Mater. Chem. Phys.
,
292
(
18
), p.
126802
.
30.
Khun
,
N. W.
,
Liu
,
E.
,
Senthilkumar
,
D.
,
Albert
,
B.
, and
Lal
,
D. M.
,
2024
, “
Effects of Deep Cryogenic Treatment on Friction and Wear of EN24 Steel Against Alumina Under Dry and Lubrication Conditions
,”
Trib. Ind.
,
46
(
2
), pp.
185
197
.
31.
Priyadarshini
,
M.
,
Behera
,
A.
, and
Biswas
,
C. K.
,
2020
, “
Effect of Sub-Zero Temperatures on Wear Resistance of AISI P20 Tool Steel
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
5
), pp.
1
13
.
32.
Soleymani
,
S.
,
Abdollah-zadeh
,
A.
, and
Alidokht
,
S. A.
,
2011
, “
Improvement in Tribological Properties of Surface Layer of an Al Alloy by Friction Stir Processing
,”
J. Surf. Eng. Mater. Adv. Technol.
,
01
(
03
), pp.
95
100
.
33.
Iakovakis
,
E.
,
Roy
,
M. J.
,
Gee
,
M.
, and
Matthews
,
A.
,
2020
, “
Evaluation of Wear Mechanisms in Additive Manufactured Carbide-Rich Tool Steels
,”
Wear
,
462–463
(
11
), p.
203449
.
34.
Schöler
,
S.
,
Kock
,
C.
,
Özkaya
,
F.
,
Nowak
,
C.
,
Möhwald
,
K.
,
Behrens
,
B. A.
, and
Maier
,
H. J.
,
2020
, “
Numerical Simulation of the Abrasive Wear Behavior of Selectively Oxidized α-Fe2O3 Oxide Layers on Tool Steel Surfaces
,”
JOM
,
72
(
7
), pp.
2536
2547
.
35.
Bourithis
,
L.
,
Papadimitriou
,
G. D.
, and
Sideris
,
J.
,
2006
, “
Comparison of Wear Properties of Tool Steels AISI D2 and O1 With the Same Hardness
,”
Tribol. Int.
,
39
(
6
), pp.
479
489
.
36.
Kumar
,
S.
,
Ranjan Maity
,
S.
, and
Patnaik
,
L.
,
2021
, “
A Comparative Study on Wear Behaviors of Hot Work and Cold Work Tool Steel With Same Hardness Under Dry Sliding Tribological Test
,”
Mater. Today: Proceed.
,
44
(
1
), pp.
949
954
.
37.
Kaymak
,
K.
,
Tazegül
,
Y.
,
Keyvanklı
,
A. B.
, and
Gecu
,
R.
,
2024
, “
Effects of Ti Addition and Wall Thickness on Microstructure, Hardness, and Wear Properties of Spheroidal Graphite Cast Irons
,”
Tribol. Int.
,
195
(
5
), p.
109612
.
38.
Dhokey
,
N. B.
,
Shinde
,
T.
,
Bawane
,
K. K.
,
Rajankar
,
A.
, and
Mahajan
,
R.
,
2024
, “
Effect of Cryosoaking Period and Soft-Tempering Temperature on Wear Behavior of AISI H13 Steel
,”
J. Mater. Eng. Perform.
39.
Özbek
,
N. A.
,
2023
, “
Effects of Cryogenic Treatment on the Microstructure, Hardness, and Wear Behavior of 1.2436 Steel
,”
Gazi J. Eng. Sci.
,
9
(
1
), pp.
100
107
.
40.
Kiraz
,
C.
,
Birol
,
B.
, and
Sağın
,
A.
,
2024
, “
The Effect of Cryogenic Treatment on W360 and E38K Hot Work Tool Steels
,”
Steel. Res. Int.
,
95
(
9
), p.
2400285
.
You do not currently have access to this content.