Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study aims to improve the accuracy of the pulling force estimation by establishing the variable friction model of the dry-lubricated split sleeve when cold working an aluminum 2024-T3 hole. The variable friction model was empirically obtained from the friction experimental setup simplified from the split-sleeve cold expansion process. The contact-pressure-dependent variable friction model was derived through a systematic design of experiments approach with three different normal stress conditions, namely low normal stress (220 MPa), medium normal stress (440 MPa), and high normal stress (660 MPa), to cover the range of normal stresses occurred in the cold expansion process. A full quadratic response surface model was drawn for the friction coefficient's nonlinear relationship between the mandrel and the lubricated sleeve, depending on the normal stresses. The variable friction model was verified with 3-dimensional friction test finite element (FE) simulations. This FE modeling validates the variable friction model to predict the pulling forces with a sound agreement between the estimated and experimentally obtained values. We conducted split-sleeve cold expansion experiments to obtain the pulling force profile. Two three-dimensional (3D) FE numerical analyses of the same split-sleeve cold expansion process were conducted using the variable friction model and a constant frictional coefficient of 0.05. The pulling force profiles from the FE modeling with the variable friction model closely align with those from the experiments to show the four distinct regions.

References

1.
Rufin
,
A. C.
,
1993
, “
Extending the Fatigue Life of Aircraft Engine Components by Hole Cold Expansion Technology
,”
ASME J. Eng. Gas Turbines Power
,
115
(
1
), pp.
165
171
.
2.
Jang
,
J.
,
Kim
,
D.
, and
Cho
,
M.
,
2008
, “
The Effect of Cold Expansion on the Fatigue Life of the Chamfered Holes
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031014
.
3.
Farhangdoost
,
K.
, and
Hosseini
,
A.
,
2011
, “
The Effect of Mandrel Speed Upon the Residual Stress Distribution Around Cold Expanded Hole
,”
Procedia Eng.
,
10
, pp.
2178
2183
.
4.
Fu
,
J.
,
Zhang
,
T.
,
Wang
,
C.
,
Chen
,
C.
,
Zhang
,
T.
, and
He
,
Y.
,
2024
, “
Effect of Cold Expansion on the Fatigue Life of Multi-Hole 7075-T6 Aluminum Alloy Structures Under the Pre-Corrosion Condition
,”
Eng. Fail. Anal.
,
165
, p.
108812
.
5.
Chakherlou
,
T. N.
, and
Vogwell
,
J.
,
2004
, “
A Novel Method of Cold Expansion Which Creates Near-Uniform Compressive Tangential Residual Stress Around a Fastener Hole
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
5
), pp.
343
351
.
6.
Zhang
,
Y.
,
Su
,
R.
,
Ma
,
H.
,
Liang
,
X.
,
Xu
,
C.
,
Han
,
K.
,
Liu
,
W.
,
Wang
,
X.
,
Shen
,
Q.
, and
Xu
,
Y.
,
2024
, “
Investigation on Fatigue Performance and Residual Stress Release Mechanism of Split Sleeve Cold Expansion Holes of Heterogeneous 7050-T7451 Aluminum Alloy
,”
J. Alloys Compd.
,
1007
, p.
176446
.
7.
Faghih
,
S.
,
Shaha
,
S. K.
,
Behravesh
,
S. B.
, and
Jahed
,
H.
,
2020
, “
Split Sleeve Cold Expansion of AZ31B Sheet: Microstructure, Texture and Residual Stress
,”
Mater. Des.
,
186
, p.
108213
.
8.
Li
,
Q.
,
Xue
,
Q.
,
Hu
,
Q.
,
Song
,
T.
,
Wang
,
Y.
, and
Li
,
S.
,
2022
, “
Cold Expansion Strengthening of 7050 Aluminum Alloy Hole: Structure, Residual Stress, and Fatigue Life
,”
Int. J. Aerosp. Eng.
,
2022
, p. 4057898.
9.
Özdemir
,
A. T.
, and
Edwards
,
L.
,
2004
, “
Through-Thickness Residual Stress Distribution After the Cold Expansion of Fastener Holes and its Effect on Fracturing
,”
ASME J. Eng. Mater. Technol.
,
126
(
1
), pp.
129
135
.
10.
De Matos
,
P. F. P.
,
Moreira
,
P. M. G. P.
,
Camanho
,
P. P.
, and
De Castro
,
P. M. S. T.
,
2005
, “
Numerical Simulation of Cold Working of Rivet Holes
,”
Finite Elem. Anal. Des.
,
41
(
9–10
), pp.
989
1007
.
11.
Kang
,
J.
,
Johnson
,
W. S.
, and
Clark
,
D. A.
,
2002
, “
Three-Dimensional Finite Element Analysis of the Cold Expansion of Fastener Holes in Two Aluminum Alloys
,”
ASME J. Eng. Mater. Technol.
,
124
(
2
), pp.
140
145
.
12.
Karabin
,
M. E.
,
Barlat
,
F.
, and
Schultz
,
R. W.
,
2007
, “
Numerical and Experimental Study of the Cold Expansion Process in 7085 Plate Using a Modified Split Sleeve
,”
J. Mater. Process. Technol.
,
189
(
1–3
), pp.
45
57
.
13.
Gopalakrishna
,
H. D.
,
Murthy
,
H. N.
,
Krishna
,
M.
,
Vinod
,
M. S.
, and
Suresh
,
A. V.
,
2010
, “
Cold Expansion of Holes and Resulting Fatigue Life Enhancement and Residual Stresses in Al 2024 T3 Alloy—An Experimental Study
,”
Eng. Fail. Anal.
,
17
(
2
), pp.
361
368
.
14.
Ayatollahi
,
M. R.
, and
Nik
,
M. A.
,
2009
, “
Edge Distance Effects on Residual Stress Distribution Around a Cold Expanded Hole in Al 2024 Alloy
,”
Comput. Mater. Sci.
,
45
(
4
), pp.
1134
1141
.
15.
Lacombe
,
A.
,
Landon
,
Y.
,
Paredes
,
M.
,
Chirol
,
C.
, and
Benaben
,
A.
,
2018
, “
Numerical Evaluation of Residual Stress Induced by Reaming of Aluminium 2024-T351
,”
International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing
,
Cartagena, Spain
,
June
.
16.
Dey
,
M.
,
Kim
,
D.
, and
Tan
,
H.
,
2020
, “
Effect of Friction on Residual Stress Distribution Induced by the Split Sleeve Cold Expansion Process
,”
Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition (IMECE2020)
,
Virtual, Online
,
Nov. 16–19
.
17.
Ismonov
,
S.
,
Daniewicz
,
S. R.
,
Newman
,
J. C.
, Jr.
,
Hill
,
M. R.
, and
Urban
,
M. R.
,
2009
, “
Three Dimensional Finite Element Analysis of a Split-Sleeve Cold Expansion Process
,”
ASME J. Eng. Mater. Technol.
,
131
(
3
), p.
031007
.
18.
Dey
,
M. K.
,
Kim
,
D.
, and
Tan
,
H.
,
2022
, “
Finite Element Parametric Study of the Split Sleeve Cold Expansion on Residual Stresses and Pulling Force
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
236
(
5
), pp.
2447
2461
.
19.
Houghton
,
S. J.
, and
Campbell
,
S. K.
,
2012
, “
Identifying the Residual Stress Field Developed by Hole Cold Expansion Using Finite Element Analysis
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
1
), pp.
74
83
.
20.
Liu
,
K.
,
Yang
,
X.
,
Zhou
,
L.
,
Li
,
M.
, and
Zhu
,
W.
,
2022
, “
Numerical Investigation of the Effect of Hole Reaming on Fatigue Life by Cold Expansion
,”
Trans. Canad. Soc. Mech. Eng.
,
46
(
2
), pp.
400
411
.
21.
Chakherlou
,
T. N.
, and
Vogwell
,
J.
,
2003
, “
The Effect of Cold Expansion on Improving the Fatigue Life of Fastener Holes
,”
Eng. Fail. Anal.
,
10
(
1
), pp.
13
24
.
22.
Lapalme
,
M.
,
Hoseini
,
M.
,
Bocher
,
P.
,
Colle
,
A. R.
, and
Lévesque
,
M.
,
2014
, “
Realistic Cold Expansion Finite Element Model and Experimental Validations for Aluminum Alloys
,”
Exp. Mech.
,
54
(
5
), pp.
841
855
.
23.
Yongshou
,
L.
,
Xiaojun
,
S.
,
Jun
,
L.
, and
Zhufeng
,
Y.
,
2010
, “
Finite Element Method and Experimental Investigation on the Residual Stress Fields and Fatigue Performance of Cold Expansion Hole
,”
Mater. Des.
,
31
(
3
), pp.
1208
1215
.
24.
Nigrelli
,
V.
, and
Pasta
,
S.
,
2008
, “
Finite-Element Simulation of Residual Stress Induced by Split-Sleeve Cold-Expansion Process of Holes
,”
J. Mater. Process. Technol.
,
205
(
1–3
), pp.
290
296
.
25.
Trzepiecinski
,
T.
,
Kubit
,
A.
,
Slota
,
J.
, and
Fejkiel
,
R.
,
2019
, “
An Experimental Study of the Frictional Properties of Steel Sheets Using the Drawbead Simulator Test
,”
Materials
,
12
(
24
), p.
4037
.
26.
Barrau
,
O.
,
Boher
,
C.
,
Gras
,
R. B.
, and
Rezai-Aria
,
F.
,
2003
, “
Analysis of the Friction and Wear Behaviour of Hot Work Tool Steel for Forging
,”
Wear
,
255
(
7–12
), pp.
1444
1454
.
27.
Dong
,
W.
,
Zhao
,
A.
,
Tong
,
H.
,
Lin
,
Q.
, and
Wang
,
Z.
,
2023
, “
A Study on Variable Friction Model in Cold Forging Process With Zinc Phosphate Coating
,”
Int. J. Adv. Manuf. Technol.
,
124
(
10
), pp.
3439
3451
.
28.
Wang
,
W.
,
Zhao
,
Y.
,
Wang
,
Z.
,
Hua
,
M.
, and
Wei
,
X.
,
2016
, “
A Study on Variable Friction Model in Sheet Metal Forming With Advanced High Strength Steels
,”
Tribol. Int.
,
93
(
A
), pp.
17
28
.
29.
Sigvant
,
M.
,
Pilthammar
,
J.
,
Hol
,
J.
,
Wiebenga
,
J. H.
,
Chezan
,
T.
,
Carleer
,
B.
, and
van den Boogaard
,
T.
,
2019
, “
Friction in Sheet Metal Forming: Influence of Surface Roughness and Strain Rate on Sheet Metal Forming Simulation Results
,”
Proc. Manuf.
,
29
, pp.
512
519
.
30.
Zabala
,
A.
,
de Argandoña
,
E. S.
,
Cañizares
,
D.
,
Llavori
,
I.
,
Otegi
,
N.
, and
Mendiguren
,
J.
,
2022
, “
Numerical Study of Advanced Friction Modelling for Sheet Metal Forming: Influence of the Die Local Roughness
,”
Tribol. Int.
,
165
, p.
107259
.
31.
Venema
,
J.
,
Hazrati
,
J.
,
Atzema
,
E.
,
Matthews
,
D.
, and
van den Boogaard
,
T.
,
2022
, “
Multiscale Friction Model for Hot Sheet Metal Forming
,”
Friction
,
10
(
2
), pp.
316
334
.
32.
Xia
,
J.
,
Zhao
,
J.
, and
Dou
,
S.
,
2022
, “
Friction Characteristics Analysis of Symmetric Aluminum Alloy Parts in Warm Forming Process
,”
Symmetry
,
14
(
1
), p.
166
.
33.
Kraus
,
M.
,
Lenzen
,
M.
, and
Merklein
,
M.
,
2021
, “
Contact Pressure-Dependent Friction Characterization by Using a Single Sheet Metal Compression Test
,”
Wear
,
476
, p.
203679
.
34.
Joun
,
M. S.
,
Moon
,
H. G.
,
Choi
,
I. S.
,
Lee
,
M. C.
, and
Jun
,
B. Y.
,
2009
, “
Effects of Friction Laws on Metal Forming Processes
,”
Tribol. Int.
,
42
(
2
), pp.
311
319
.
35.
Balasundar
,
I.
, and
Raghu
,
T.
,
2010
, “
Effect of Friction Model in Numerical Analysis of Equal Channel Angular Pressing Process
,”
Mater. Des.
,
31
(
1
), pp.
449
457
.
36.
Djavanroodi
,
F.
, and
Ebrahimi
,
M.
,
2010
, “
Effect of die Channel Angle, Friction and Back Pressure in the Equal Channel Angular Pressing Using 3D Finite Element Simulation
,”
Mater. Sci. Eng.: A
,
527
(
4–5
), pp.
1230
1235
.
37.
Wang
,
D.
,
Yang
,
H.
, and
Li
,
H.
,
2014
, “
Advance and Trend of Friction Study in Plastic Forming
,”
Trans. Nonferr. Met. Soc. China
,
24
(
5
), pp.
1263
1272
.
38.
Champoux
,
R. L.
, “Method of Cold Expanding and Sizing Fastener Holes.” U.S. Patent US4557033A.
39.
Białas
,
M.
,
Maciejewski
,
J.
, and
Kucharski
,
S.
,
2021
, “
Friction Coefficient of Solid Lubricating Coating as a Function of Contact Pressure: Experimental Results and Microscale Modeling
,”
Continuum Mech. Thermodyn.
,
33
(
4
), pp.
1733
1745
.
40.
Kohli
,
A. K.
, and
Prakash
,
B.
,
2001
, “
Contact Pressure Dependency in Frictional Behavior of Burnished Molybdenum Disulphide Coatings
,”
Tribol. Trans.
,
44
(
1
), pp.
147
151
.
You do not currently have access to this content.