Abstract

In this study, the effects of the evolution of bearing outer race defect size and increase in speed on the vibration characteristics of a shaft-bearing system under unbalanced conditions are simulated and analyzed. A two degrees-of-freedom mathematical model is presented for a ball bearing used in an unbalanced shaft-bearing system. The contact stiffness between the races and the balls is considered as a series of springs is incorporated in the model. Hertzian contact deformation theory is used to obtain the contact stiffness. This model considers the contact deformation between the balls and the races, the additional displacement between the balls and the inner race due to radial clearance and due to defect geometry. The maximum possible radial displacement of the ball into the defect is calculated analytically using the groove radius, ball radius, and defect diameter. The rectangular function is used for modeling the defect. matlab codes are developed for modeling the bearing and for solving the differential equations of motion using the Runge–Kutta method. The vibration responses (peak and root-mean-square (RMS) values) obtained by modeling and by experimentation show similar vibration characteristics. The investigation shows that the values of statistical parameters initially increase with the increase in defect size and then decrease with a further increase in defect size. While peak and RMS increase with the increase in speed, crest factor and kurtosis decrease with the increase in speed. Peak is more sensitive for diagnosing spalls on outer race and its evolution. This study helps as an effective diagnosis of antifriction bearings having spalls on the outer race under unbalanced conditions.

References

1.
Howard
,
I.
,
1994
, “A Review of Rolling Element Bearing Vibration “Detection, Diagnosis and Prognosis,” Defence Science and Technology Organization, Canberra, Australia.
2.
Jain
,
P. H.
, and
Bhosle
,
S. P.
,
2021
, “
A Review on Vibration Signal Analysis Techniques Used for Detection of Rolling Element Bearing Defects
,”
Int. J. Mech. Eng.
,
8
(
1
), pp.
14
29
.
3.
Liu
,
J.
,
Shao
,
Y.
, and
Zuo
,
M. J.
,
2013
, “
The Effects of the Shape of Localized Defect in Ball Bearings on the Vibration Waveform
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn.
,
227
(
3
), pp.
261
274
.
4.
Jain
,
P. H.
, and
Bhosle
,
S. P.
,
2023
, “
Mathematical Modeling, Simulation and Analysis of Non-linear Vibrations of a Ball Bearing Due to Radial Clearance and Number of Balls
,”
Mater. Today: Proc.
,
72
(
3
), pp.
927
936
.
5.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2011
, “
Vibration Response of Spalled Rolling Element Bearings: Observations, Simulations and Signal Processing Techniques to Track the Spall Size
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
846
870
.
6.
Zhao
,
S.
,
Liang
,
L.
,
Xu
,
G.
,
Wang
,
J.
, and
Zhang
,
W.
,
2013
, “
Quantitative Diagnosis of a Spall-Like Fault of a Rolling Element Bearing by Empirical Mode Decomposition and the Approximate Entropy Method
,”
Mech. Syst. Signal Process.
,
40
(
1
), pp.
154
177
.
7.
Desavale
,
R. G.
,
Kanai
,
R. A.
,
Chavan
,
S. P.
,
Venkatachalam
,
R.
, and
Jadhav
,
P. M.
,
2015
, “
Vibration Characteristics Diagnosis of Roller Bearing Using the New Empirical Model
,”
ASME J. Tribol.
,
138
(
1
), p.
011103
.
8.
Liu
,
J.
,
Xu
,
Z.
,
Zhou
,
L.
,
Yu
,
W.
, and
Shao
,
Y.
,
2019
, “
A Statistical Feature Investigation of the Spalling Propagation Assessment for a Ball Bearing
,”
Mech. Mach. Theory
,
131
, pp.
336
350
.
9.
Singh
,
P.
, and
Harsha
,
S. P.
,
2019
, “
Statistical and Frequency Analysis of Vibrations Signals of Roller Bearings Using Empirical Mode Decomposition
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn.
,
233
(
4
), pp.
856
870
.
10.
Patil
,
A. P.
,
Mishra
,
B. K.
, and
Harsha
,
S. P.
,
2021
, “
A Mechanics and Signal Processing Based Approach for Estimating the Size of Spall in Rolling Element Bearing
,”
Eur. J. Mech. A/Solids
,
85
, p.
104125
.
11.
Jafari
,
S. M.
,
Rohani
,
R.
, and
Rahi
,
A.
,
2020
, “
Experimental and Numerical Study of an Angular Contact Ball Bearing Vibration Response With Spall Defect on the Outer Race
,”
Arch. Appl. Mech.
,
90
(
11
), pp.
2487
2511
.
12.
Jain
,
P. H.
, and
Bhosle
,
S. P.
,
January 1, 2021
,
Techno-Societal 2020, Proceedings of the 3rd International Conference on Advanced Technologies for Societal Applications
, Vol.
2
,
Springer
, pp.
649
663
. DOI: 10.1007/978-3-030-69925-3_63
13.
Suryawanshi
,
G. L.
,
Patil
,
S. K.
, and
Desavale
,
R. G.
,
2021
, “
Dynamic Model to Predict Vibration Characteristics of Rolling Element Bearings With Inclined Surface Fault
,”
Measurement
,
184
, p.
109879
.
14.
Jain
,
P. H.
, and
Bhosle
,
S. P.
,
2022
, “
Analysis of Vibration Signals Caused by Ball Bearing Defects Using Time-Domain Statistical Indicators
,”
IJATEE
,
9
(
90
), pp.
700
715
.
15.
Patil
,
S. M.
,
Desavale
,
R. G.
, and
Kumbhar
,
S. G.
,
2021
, “
Roller Element Bearing Fault Size Estimation Using Adaptive Neurofuzzy Inference System
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B Mech. Eng.
,
7
(
1
), p.
011001
.
16.
Jain
,
P. H.
, and
Bhosle
,
S. P.
,
2021
, “
Study of Effects of Radial Load on Vibration of Bearing Using Time-Domain Statistical Parameters
,”
IOP Conference Series: Materials Science and Engineering
,
1070
, p.
012130
.
10.1088/1757-899X/1070/1/012130
.
17.
Liu
,
J.
,
Shao
,
Y.
, and
Lim
,
T. C.
,
2012
, “
Vibration Analysis of Ball Bearings With a Localized Defect Applying Piecewise Response Function
,”
Mech. Mach. Theory
,
56
, pp.
156
169
.
18.
Kulkarni
,
P. G.
, and
Sahasrabudhe
,
A. D.
,
2014
, “
A Dynamic Model of Ball Bearing for Simulating Localized Defects on Outer Race Using Cubic Hermite Spline
,”
J. Mech. Sci. Technol.
,
28
(
9
), pp.
3433
3442
.
19.
Liu
,
J.
,
Shao
,
Y.
, and
Zhu
,
W. D.
,
2015
, “
A New Model for the Relationship Between Vibration Characteristics Caused by the Time-Varying Contact Stiffness of a Deep Groove Ball Bearing and Defect Sizes
,”
ASME J. Tribol.
,
137
(
3
), p.
031101
.
20.
Cui
,
L.
,
Zhang
,
Y.
,
Zhang
,
F.
,
Zhang
,
J.
, and
Lee
,
S.
,
2016
, “
Vibration Response Mechanism of Faulty Outer Race Rolling Element Bearings for Quantitative Analysis
,”
J. Sound Vib.
,
364
, pp.
67
76
.
21.
Luo
,
M. L.
, and
Guo
,
Y.
,
2017
, “
Dynamic Mechanism Modeling for Dual-Impulse Behavior Excited by a Spall on Outer Race of Ball Bearing
,”
Vibroeng. Procedia
,
14
, pp.
57
63
.
22.
Yang
,
R.
,
Jin
,
Y.
,
Hou
,
L.
, and
Chen
,
Y.
,
2017
, “
Study for Ball Bearing Outer Race Characteristic Defect Frequency Based on Nonlinear Dynamics Analysis
,”
Nonlinear Dyn.
,
90
(
2
), pp.
781
796
.
23.
Liu
,
J.
,
Shi
,
Z.
, and
Shao
,
Y.
,
2018
, “
A Theoretical Study for the Influence of the Combined Defect on Radial Vibrations of a Ball Bearing
,”
ILT
,
70
(
2
), pp.
339
346
.
24.
Kong
,
F.
,
Huang
,
W.
,
Jiang
,
Y.
,
Wang
,
W.
, and
Zhao
,
X.
,
2018
, “
A Vibration Model of Ball Bearings With a Localized Defect Based on the Hertzian Contact Stress Distribution
,”
Shock Vib.
,
2018
, pp.
1
14
.
25.
Qin
,
X.
,
Li
,
Q.
,
Dong
,
X.
, and
Lv
,
S.
,
2017
, “
The Fault Diagnosis of Rolling Bearing Based on Ensemble Empirical Mode Decomposition and Random Forest
,”
Shock Vib.
,
2017
, pp.
1
9
.
26.
Cheng
,
H.
,
Zhang
,
Y.
,
Lu
,
W.
, and
Yang
,
Z.
,
2021
, “
Mechanical Characteristics and Nonlinear Dynamic Response Analysis of Rotor-Bearing-Coupling System
,”
Appl. Math. Model.
,
93
, pp.
708
727
.
27.
Mufazzal
,
S.
,
Muzakkir
,
S.
, and
Khanam
,
S.
,
2021
, “
Theoretical and Experimental Analyses of Vibration Impulses and Their Influence on Accurate Diagnosis of Ball Bearing With Localized Outer Race Defect
,”
J. Sound Vib.
,
513
, p.
116407
.
28.
Liu
,
Y.
,
Kang
,
W.
,
Zhu
,
Y.
,
Yan
,
K.
, and
Hong
,
J.
,
2020
, “
Effects of Defect on Roller-Raceway Contact State and Friction Torque of Tapered Roller Bearings
,”
ASME J. Tribol.
,
142
(
11
), p.
111501
.
29.
Arslan
,
H.
, and
Aktürk
,
N.
,
2008
, “
An Investigation of Rolling Element Vibrations Caused by Local Defects
,”
ASME J. Tribol.
,
130
(
4
), p.
041101
.
30.
Li
,
C.
,
Qin
,
Y.
,
Wang
,
Y.
, and
Chen
,
H.
,
2020
, “
Vibration Analysis of Deep Groove Ball Bearings With Local Defect Using a New Displacement Excitation Function
,”
ASME J. Tribol.
,
142
(
12
), p.
121202
.
31.
Patel
,
V. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.
32.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Effect of Radial Internal Clearance of a Ball Bearing on the Dynamics of a Balanced Horizontal Rotor
,”
J. Sound Vib.
,
238
(
5
), pp.
723
756
.
33.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Dynamic Response of an Unbalanced Rotor Supported on Ball Bearings
,”
J. Sound Vib.
,
238
(
5
), pp.
757
779
.
34.
Harsha
,
S. P.
,
2006
, “
Nonlinear Dynamic Analysis of a High-Speed Rotor Supported by Rolling Element Bearings
,”
J. Sound Vib.
,
290
(
1
), pp.
65
100
.
35.
Chen
,
G.
,
2009
, “
Study on Nonlinear Dynamic Response of an Unbalanced Rotor Supported on Ball Bearing
,”
ASME J. Vib. Acoust.
,
131
(
6
), p.
061001
.
36.
Upadhyay
,
S. H.
,
Harsha
,
S. P.
, and
Jain
,
S. C.
,
2010
, “
Analysis of Nonlinear Phenomena in High Speed Ball Bearings Due to Radial Clearance and Unbalanced Rotor Effects
,”
J. Vib. Control
,
16
(
1
), pp.
65
88
.
37.
Kappaganthu
,
K.
, and
Nataraj
,
C.
,
2011
, “
Nonlinear Modeling and Analysis of a Rolling Element Bearing With a Clearance
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
10
), pp.
4134
4145
.
38.
Upadhyay
,
N.
,
Metsebo
,
J.
,
Kankar
,
P. K.
, and
Nbendjo
,
N.
,
2017
, “
An Improved Theoretical Model of Unbalanced Shaft-Bearing System for Accurate Performance Prediction of Ball Bearing Due to Localized Defects
,”
Iran. J. Sci. Technol.: Trans. Mech. Eng.
,
42
(
3
), pp.
293
309
.
39.
Patra
,
P.
,
Saran
,
V. H.
, and
Harsha
,
S. P.
,
2019
, “Nonlinear Dynamic Response Analysis of Cylindrical Roller Bearings Due to Unbalance,”
Advances in Engineering Design
,
A.
Prasad
,
S. S.
Gupta
, and
R. K.
Tyagi
, eds.,
Springer Singapore
,
Singapore
, pp.
815
824
.
40.
Patra
,
P.
,
Saran
,
V. H.
, and
Harsha
,
S. P.
,
2020
, “
Chaotic Dynamics of Cylindrical Roller Bearing Supported by Unbalanced Rotor Due to Localized Defects
,”
J. Vib. Control
,
26
(
21–22
), pp.
1898
1908
.
41.
Mattar
,
A. H. A.
,
Sayed
,
H.
,
Younes
,
Y. K.
, and
El-Mongy
,
H. H.
,
2022
, “
Experimental Verification and Nonlinear Dynamic Response Analysis of a Rolling Element Bearing With Localized Defects
,”
J. Fail. Anal. Prev.
,
22
(
4
), pp.
1753
1770
.
42.
Jain
,
P. H.
, and
Bhosle
,
S. P.
,
2020
, “
Analysis on Vibration Signal Analysis Techniques Used in Diagnosis of Faults in Rotating Machinery
,”
Int. J. Mech. Prod. Eng. Res. Dev.
,
10
(
3
), pp.
3377
3396
.
43.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
,
John Wiley and Sons
,
New York
.
44.
Rafsanjani
,
A.
,
Abbasion
,
S.
,
Farshidianfar
,
A.
, and
Moeenfard
,
H.
,
2009
, “
Nonlinear Dynamic Modeling of Surface Defects in Rolling Element Bearing Systems
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1150
1174
.
45.
Liu
,
J.
, and
Shao
,
Y.
,
2015
, “
A New Dynamic Model for Vibration Analysis of a Ball Bearing Due to a Localized Surface Defect Considering Edge Topographies
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1329
1351
.
46.
Jain
,
P. H.
, and
Bhosle
,
S. P.
,
2022
, “
Analysis of Effects of Radial Clearance and Unbalance on Vibration Responses of a Rotor-Bearing System
,”
Int. J. Eng. Trends Technol.
,
70
(
1
), pp.
327
347
.
47.
Franco
,
J. M.
,
Akturk
,
N.
, and
Gohar
,
R.
,
1992
, “
Vibration of a Rigid Shaft Supported by Radial Ball Bearings With Several Defects
,”
American Society of Mechanical Engineers Digital Collection
,
Cologne, Germany
,
June 1–4
.
48.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.
49.
Fukata
,
S.
,
Gad
,
E. H.
,
Kondou
,
T.
,
Ayabe
,
T.
, and
Tamura
,
H.
,
1985
, “
On the Radial Vibration of Ball Bearings: Computer Simulation
,”
Bull. JSME
,
28
(
239
), pp.
899
904
.
50.
Shinde
,
P. V.
,
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Sawant
,
S. H.
,
2023
, “
A Multi Fault Classification in a Rotor-Bearing System Using Machine Learning Approach
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
2
), p.
121
.
51.
Jadhav
,
P. M.
,
Kumbhar
,
S. G.
,
Desavale
,
R. G.
, and
Patil
,
S. B.
,
2020
, “
Distributed Fault Diagnosis of Rotor-Bearing System Using Dimensional Analysis and Experimental Methods
,”
Measurement
,
166
, p.
108239
.
52.
Dyer
,
D.
, and
Stewart
,
R. M.
,
1978
, “
Detection of Rolling Element Bearing Damage by Statistical Vibration Analysis
,”
ASME J. Mech. Des.
,
100
(
2
), pp.
229
235
.
53.
Chen
,
L.
,
Tan
,
A.
,
Yang
,
L.
,
Pang
,
X.
, and
Qiu
,
M.
,
2022
, “
Defect Size Evaluation of Cylindrical Roller Bearings With Compound Faults on the Inner and Outer Races
,”
Math. Probl. Eng.
,
2022
, p.
e6070822
.
54.
Patil
,
M.
,
Mathew
,
J.
, and
Rajendrakumar
,
P.
,
2009
, “
Application of Statistical Moments and Spectral Analysis in Condition Monitoring of Rolling Element Bearings
,”
Int. J. COMADEM
,
12
(
1
), pp.
31
36
.
55.
de Almeida
,
R. G. T.
,
da Silva Vicente
,
S. A.
, and
Padovese
,
L. R.
,
2002
, “
New Technique for Evaluation of Global Vibration Levels in Rolling Bearings
,”
Shock Vib.
,
9
(
4–5
), pp.
225
234
.
56.
Yang
,
Y.
,
Yang
,
W.
, and
Jiang
,
D.
,
2018
, “
Simulation and Experimental Analysis of Rolling Element Bearing Fault in Rotor-Bearing-Casing System
,”
Eng. Fail. Anal.
,
92
, pp.
205
221
.
You do not currently have access to this content.