The effect of length scale in free-stream turbulence is considered for heat transfer in laminar boundary layers. A model is proposed that accounts for an “effective” intensity of turbulence based on a dominant frequency for a laminar boundary layer. Assuming a standard turbulence spectral distribution, a new turbulence parameter that accounts for both turbulence level and length scale is obtained and used to correlate heat transfer data for laminar stagnation flows. The result indicates that the heat transfer for these flows is linearly dependent on the “effective” free-stream turbulence intensity.

1.
Ames, F. E., and Moffat, R. J., 1990, “Heat Transfer With High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point,” Dept. of Mech. Engng. Report No. HMT-44, Stanford University, Stanford, CA.
2.
Baines
W. D.
, and
Peterson
E. G.
,
1951
, “
An Investigation of Flow Through Screens
,”
Trans. ASME
, Vol.
73
, pp.
467
480
.
3.
Bayley
F. J.
, and
Priddy
W. J.
,
1981
, “
Effects of Free-Stream Turbulence Intensity and Frequency on Heat Transfer to Turbine Blading
,”
ASME Journal of Engineering for Power
, Vol.
103
, pp.
60
64
.
4.
Dullenkopf
K.
, and
Mayle
R. E.
,
1994
, “
The Effects of Incident Turbulence and Moving Wakes on Laminar Heat Transfer in Gas Turbines
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
116
, pp.
23
28
.
5.
Dyban, E., and Epick, E., 1970, “Some Heat Transfer Features in the Air Flow of Intensified Turbulence,” Proc. 4th Int. Heat Transfer Conf., Paris.
6.
Dyban, E., and Epick, E., 1978, “Heat Transfer in a Boundary Layer in Turbulized Air Flow,” Proc. 6th Int. Heat Transfer Conf., Vol. 2, Toronto.
7.
Dyban, E., and Epick, E., 1985, Thermal/Mass Transport and Hydrodynamics of Turbulent Flows, Kiev (in Russian).
8.
Eckert, E., 1942, “Die Berechnung des Wa¨rmeu¨bergangs in der laminar Grenzschicht umstro¨mter Ko¨rper,” VDI-Forschungsheft 416.
9.
Hinze, J. O., 1959, Turbulence, McGraw-Hill, New York.
10.
Junkhan
G. H.
, and
Serovy
G. K.
,
1967
, “
Effects of Free-Stream Turbulence and Pressure Gradient on Flat-Plate Boundary-Layer Velocity Profiles and on Heat Transfer
,”
ASME Journal of Heat Transfer
, Vol.
89
, pp.
169
176
.
11.
Kestin
J.
,
Maeder
P. F.
, and
Wang
H. E.
,
1961
, “
Influence of Turbulence on the Transfer of Heat from Plates With and Without a Pressure Gradient
,”
Int. J. Heat Mass Transfer
, Vol.
3
, pp.
133
154
.
12.
Kestin
J.
,
1966
, “
The Effect of Free-Stream Turbulence on Heat-Transfer Rates
,”
Advances in Heat Transfer
, T. F. Irvine, Jr., and J. P, Hartnett, eds., Vol.
3
, pp.
1
32
.
13.
Kestin
J.
, and
Wood
R. T.
,
1971
, “
The Influence of Turbulence on Mass Transfer From Cylinders
,”
ASME Journal of Heat Transfer
, Vol.
93
, pp.
321
327
.
14.
Lowery
G. W.
, and
Vachon
R. L.
,
1975
, “
The Effect of Turbulence on Heat Transfer from Heated Cylinders
,”
Int. J. Heat Mass Transfer
, Vol.
18
, pp.
1229
1242
.
15.
Mayle
R. E.
,
1991
, “
The Role of Laminar–Turbulent Transition in Gas Turbine Engines
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
113
, pp.
509
537
.
16.
Ru¨d, K., 1985, “Transitionale Grenzschichten unter dem Einfluß hoher Freistromturbulenz, intensiver Wandku¨hlung und starken Druckgradienten in Heißgasstro¨mungen,” Ph.D. Thesis, Universita¨t Karlsruhe, Karlsruhe, Germany.
17.
Schlichting, H., 1979, Boundary-Layer Theory, McGraw-Hill, New York.
18.
Schulz, A., 1986, “Zum Einfluß hoher Freistromturbulenz, intensiver Ku¨hlung und einer Nachlaufstro¨mung auf den a¨ußeren Wa¨rmeu¨bergang einer konvektiv geku¨lten Gasturbinenschaufel,” Ph.D. Thesis, U. Karlsruhe, Karlsruhe, Germany.
19.
Sikmanovic, S., Oka, S., and Koncar-Djurdjevic, S., 1974, “Influence of the Structure of Turbulent Flow on Heat Transfer From a Single Cylinder in a Cross Flow,” Proc. 5th Int. Heat Transfer Conf., Vol. 2, Tokyo.
20.
Smith
M. C.
, and
Kuethe
A. M.
,
1966
, “
Effects of Turbulence on Laminar Skin Friction and Heat Transfer
,”
Physics of Fluids
, Vol.
9
, pp.
2337
2344
.
21.
Turner
A. B.
,
1971
, “
Local Heat Transfer Measurements on a Gas Turbine Blade
,”
J. Mech. Engng. Science
, Vol.
13
, pp.
1
12
.
1.
Van Dresar, N. T., 1987, “The Effect of Incident Wake Flow on Blunt-Body Transfer Rates,” Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY
2.
(also see
Van Dresar
N. T.
, and
Mayle
R. E.
,
1989
, “
A Quasi-Steady Approach to Leading Edge Transfer Rates
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
111
, pp.
483
490
).
1.
Yardi, N. R., and Sukhatme, S. P., 1978, “Effect of Turbulence Intensity and Integral Length Scale of a Turbulent Free Stream on Forced Convection Heat Transfer From a Circular Cylinder in Cross-flow,” Proceedings 6th International Heat Transfer Conference, Toronto, Canada, Vol. 5, FC(b)-29, pp. 347–352.
2.
Zapp, G., Jr., 1950, “The Effect of Turbulence on Local Transfer Coefficients around a Cylinder Normal to an Air Stream,” Master’s Thesis, Oregon State College, Corvallis, OR.
This content is only available via PDF.
You do not currently have access to this content.