A comparative study of two transition zone models was carried out to assess their ability to simulate boundary layer laminar-turbulent transition. Transition modeling is based on the use of an algebraic equation for the intermittency distribution. The crucial difference between the models lies in the nondimensional breakdown rate formulation. A two-dimensional marching code was used to combine these models with the modified Johnson and King turbulence model and the algebraic “nonturbulence” model developed earlier. Flat plate and various turbine blade heat transfer measurements were used in the comparison. One model gave reasonably accurate results for most of the test cases considered.

1.
Narasimha
,
R.
,
1985
, “
The Laminar-Turbulent Transition Zone in the Boundary Layer
,”
Prog. Aerosp. Sci.
,
22
, pp.
29
80
.
2.
Mayle
,
R.E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
3.
Westin
,
K.J.A.
, and
Henkes
,
R.A.W.M.
,
1997
, “
Application of Turbulence Models to Bypass Transition
,”
ASME J. Fluids Eng.
,
119
, pp.
859
866
.
4.
Cho
,
J.R.
, and
Chung
,
M.K.
,
1992
, “
A k-ε-γ Equation Turbulence Model
,”
J. Fluid Mech.
,
237
, pp.
301
322
.
5.
Steelant
,
J.
, and
Dick
,
E.
,
2001
, “
Modeling of Laminar-Turbulent Transition for High Freestream Turbulence
,”
ASME J. Fluids Eng.
,
123
, pp.
22
30
.
6.
Suzen
,
Y.B.
, and
Huang
,
P.G.
,
2000
, “
Modeling of Flow Transition Using an Intermittency Transport Equation
,”
ASME J. Fluids Eng.
,
122
, pp.
273
284
.
7.
Solomon
,
W.J.
,
Walker
,
G.J.
, and
Gostelow
,
J.P.
,
1996
, “
Transition Length Prediction for Flows With Rapidly Changing Pressure Gradients
,”
ASME J. Turbomach.
,
118
, pp.
744
751
.
8.
Emmons
,
H.W.
,
1951
, “
The Laminar-Turbulent Transition in a Boundary Layer—Part I
,”
J. Aerosp. Sci.
,
18
, pp.
490
498
.
9.
Narasimha
,
R.
,
1957
, “
On the Distribution of Intermittency in the Transition Region of a Boundary Layer
,”
J. Aerosp. Sci.
,
24
(
9
), pp.
711
712
.
10.
Chen
,
K.K.
, and
Thyson
,
N.A.
,
1971
, “
Extension of Emmons’ Spot Theory to Flows on Blunt Bodies
,”
AIAA J.
,
9
, pp.
821
825
.
11.
Gostelow
,
J.P.
,
Blunden
,
A.R.
, and
Walker
,
G.J.
,
1994
, “
Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
,
116
, pp.
392
404
.
12.
Gostelow
,
J.P.
,
Melwani
,
N.
, and
Walker
,
G.J.
,
1996
, “
Effects of Streamwise Pressure Gradient on Turbulent Spot Development
,”
ASME J. Turbomach.
,
118
, pp.
737
743
.
13.
Fraser
,
C.J.
,
Higazy
,
M.G.
, and
Milne
,
J.S.
,
1994
, “
End-Stage Boundary Layer Transition Models for Engineering Calculations
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
208
, pp.
47
58
.
14.
Byvaltsev, P.M., and Nagashima, T., 2001, “Heat Transfer Prediction for Transitional Boundary Layer Flows at the Turbine Blade Surface,” Some Aero-Thermo-Fluid Aspects in Airbreathing Propulsion, Proceedings of Japan-Russia Seminars on Specialized Aspects in Aerospace Propulsion Research, University of Tokyo and CIAM (1995–1998), T. Nagashima and M. Ivanov, eds., Central Institute of Aviation Motors, Moscow, pp. 204–226.
15.
Byvaltsev
,
P.M.
, and
Nagashima
,
T.
,
1998
, “
Correlation of Numerical and Experimental Heat Transfer Data at the Turbine Blade Surface
,”
JSME Int. J., Ser.
,
41
(
1
), pp.
191
199
.
16.
Johnson
,
D.A.
, and
King
,
L.S.
,
1990
, “
A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layers
,”
AIAA J.
,
28
(
11
), pp.
2000
2003
.
17.
Rued
,
K.
, and
Wittig
,
S.
,
1985
, “
Free-Stream Turbulence and Pressure Gradient Effects on Heat Transfer and Boundary Layer Development on Highly Cooled Surfaces
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
54
59
.
18.
Ames
,
F.E.
,
1997
, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
, pp.
23
30
.
19.
Consigny
,
H.
, and
Richards
,
B.E.
,
1982
, “
Short Duration Measurements of Heat-Transfer Rate to a Gas Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
104
, pp.
542
551
.
20.
Arts, T., Lambert de Rouvroit, M., and Rutherford, A.W., 1990, “Aero-Thermal Investigations of a Highly Loaded Transonic Linear Guide Vane Cascade,” VKI Technical Note 174.
21.
Arts
,
T.
,
Duboue
,
J.-M.
, and
Rollin
,
G.
,
1998
, “
Aerothermal Performance Measurements and Analysis of a Two-Dimensional High Turning Rotor Blade
,”
ASME J. Turbomach.
,
120
, pp.
494
499
.
22.
Schlichting, H., Boundary-Layer Theory, McGraw-Hill, New York.
23.
Reyhner
,
T.A.
, and
Reyhner
,
T.A.
,
1968
, “
The Interaction of a Shock Wave With a Laminar Boundary Layer
,”
Int. J. Non-Linear Mech.
,
3
(2), pp.
173
199
.
24.
Cebeci, T., 1988, “Parabolic System: Finite-Difference Method II,” Handbook of Numerical Heat Transfer, W.J. Minkowycz et al., eds., John Wiley and Sons, New York, pp. 117–154.
25.
Dullenkopf
,
K.
, and
Mayle
,
R.E.
,
1995
, “
An Account of Free-Stream-Turbulence Length Scale on Laminar Heat Transfer
,”
ASME J. Turbomach.
,
117
, pp.
401
406
.
26.
Westin
,
K.J.A.
,
Boiko
,
A.V.
,
Klingmann
,
B.G.B.
,
Kozlov
,
V.V.
, and
Alfredsson
,
P.H.
,
1994
, “
Experiments in a Boundary Layer Subjected to Free Stream Turbulence—Part 1: Boundary Layer Structure and Receptivity
,”
J. Fluid Mech.
,
281
, pp.
193
218
.
27.
Neel
,
R.E.
,
Walters
,
R.W.
, and
Simpson
,
R.L.
,
1998
, “
Computations of Steady and Unsteady Low-Speed Turbulent Separated Flows
,”
AIAA J.
,
36
(
7
), pp.
1208
1215
.
28.
Cebeci, T., and Smith, A.M.O., 1974, Analysis of Turbulent Boundary Layers, Academic Press, San Diego, CA.
29.
Byvaltsev
,
P.M.
,
1992
, “
A Method of Calculating the Flow Around and Aerodynamic Design of the Profiles of Turbomachinery Blade Rows
,”
Comput. Maths Math. Phys.
,
32
(
4
), pp.
509
519
.
You do not currently have access to this content.