A comparative study of two transition zone models was carried out to assess their ability to simulate boundary layer laminar-turbulent transition. Transition modeling is based on the use of an algebraic equation for the intermittency distribution. The crucial difference between the models lies in the nondimensional breakdown rate formulation. A two-dimensional marching code was used to combine these models with the modified Johnson and King turbulence model and the algebraic “nonturbulence” model developed earlier. Flat plate and various turbine blade heat transfer measurements were used in the comparison. One model gave reasonably accurate results for most of the test cases considered.
Issue Section:
Technical Papers
1.
Narasimha
, R.
, 1985
, “The Laminar-Turbulent Transition Zone in the Boundary Layer
,” Prog. Aerosp. Sci.
, 22
, pp. 29
–80
.2.
Mayle
, R.E.
, 1991
, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,” ASME J. Turbomach.
, 113
, pp. 509
–537
.3.
Westin
, K.J.A.
, and Henkes
, R.A.W.M.
, 1997
, “Application of Turbulence Models to Bypass Transition
,” ASME J. Fluids Eng.
, 119
, pp. 859
–866
.4.
Cho
, J.R.
, and Chung
, M.K.
, 1992
, “A k-ε-γ Equation Turbulence Model
,” J. Fluid Mech.
, 237
, pp. 301
–322
.5.
Steelant
, J.
, and Dick
, E.
, 2001
, “Modeling of Laminar-Turbulent Transition for High Freestream Turbulence
,” ASME J. Fluids Eng.
, 123
, pp. 22
–30
.6.
Suzen
, Y.B.
, and Huang
, P.G.
, 2000
, “Modeling of Flow Transition Using an Intermittency Transport Equation
,” ASME J. Fluids Eng.
, 122
, pp. 273
–284
.7.
Solomon
, W.J.
, Walker
, G.J.
, and Gostelow
, J.P.
, 1996
, “Transition Length Prediction for Flows With Rapidly Changing Pressure Gradients
,” ASME J. Turbomach.
, 118
, pp. 744
–751
.8.
Emmons
, H.W.
, 1951
, “The Laminar-Turbulent Transition in a Boundary Layer—Part I
,” J. Aerosp. Sci.
, 18
, pp. 490
–498
.9.
Narasimha
, R.
, 1957
, “On the Distribution of Intermittency in the Transition Region of a Boundary Layer
,” J. Aerosp. Sci.
, 24
(9
), pp. 711
–712
.10.
Chen
, K.K.
, and Thyson
, N.A.
, 1971
, “Extension of Emmons’ Spot Theory to Flows on Blunt Bodies
,” AIAA J.
, 9
, pp. 821
–825
.11.
Gostelow
, J.P.
, Blunden
, A.R.
, and Walker
, G.J.
, 1994
, “Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,” ASME J. Turbomach.
, 116
, pp. 392
–404
.12.
Gostelow
, J.P.
, Melwani
, N.
, and Walker
, G.J.
, 1996
, “Effects of Streamwise Pressure Gradient on Turbulent Spot Development
,” ASME J. Turbomach.
, 118
, pp. 737
–743
.13.
Fraser
, C.J.
, Higazy
, M.G.
, and Milne
, J.S.
, 1994
, “End-Stage Boundary Layer Transition Models for Engineering Calculations
,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
, 208
, pp. 47
–58
.14.
Byvaltsev, P.M., and Nagashima, T., 2001, “Heat Transfer Prediction for Transitional Boundary Layer Flows at the Turbine Blade Surface,” Some Aero-Thermo-Fluid Aspects in Airbreathing Propulsion, Proceedings of Japan-Russia Seminars on Specialized Aspects in Aerospace Propulsion Research, University of Tokyo and CIAM (1995–1998), T. Nagashima and M. Ivanov, eds., Central Institute of Aviation Motors, Moscow, pp. 204–226.
15.
Byvaltsev
, P.M.
, and Nagashima
, T.
, 1998
, “Correlation of Numerical and Experimental Heat Transfer Data at the Turbine Blade Surface
,” JSME Int. J., Ser.
, 41
(1
), pp. 191
–199
.16.
Johnson
, D.A.
, and King
, L.S.
, 1990
, “A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layers
,” AIAA J.
, 28
(11
), pp. 2000
–2003
.17.
Rued
, K.
, and Wittig
, S.
, 1985
, “Free-Stream Turbulence and Pressure Gradient Effects on Heat Transfer and Boundary Layer Development on Highly Cooled Surfaces
,” ASME J. Eng. Gas Turbines Power
, 107
, pp. 54
–59
.18.
Ames
, F.E.
, 1997
, “The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,” ASME J. Turbomach.
, 119
, pp. 23
–30
.19.
Consigny
, H.
, and Richards
, B.E.
, 1982
, “Short Duration Measurements of Heat-Transfer Rate to a Gas Turbine Rotor Blade
,” ASME J. Eng. Gas Turbines Power
, 104
, pp. 542
–551
.20.
Arts, T., Lambert de Rouvroit, M., and Rutherford, A.W., 1990, “Aero-Thermal Investigations of a Highly Loaded Transonic Linear Guide Vane Cascade,” VKI Technical Note 174.
21.
Arts
, T.
, Duboue
, J.-M.
, and Rollin
, G.
, 1998
, “Aerothermal Performance Measurements and Analysis of a Two-Dimensional High Turning Rotor Blade
,” ASME J. Turbomach.
, 120
, pp. 494
–499
.22.
Schlichting, H., Boundary-Layer Theory, McGraw-Hill, New York.
23.
Reyhner
, T.A.
, and Reyhner
, T.A.
, 1968
, “The Interaction of a Shock Wave With a Laminar Boundary Layer
,” Int. J. Non-Linear Mech.
, 3
(2), pp. 173
–199
.24.
Cebeci, T., 1988, “Parabolic System: Finite-Difference Method II,” Handbook of Numerical Heat Transfer, W.J. Minkowycz et al., eds., John Wiley and Sons, New York, pp. 117–154.
25.
Dullenkopf
, K.
, and Mayle
, R.E.
, 1995
, “An Account of Free-Stream-Turbulence Length Scale on Laminar Heat Transfer
,” ASME J. Turbomach.
, 117
, pp. 401
–406
.26.
Westin
, K.J.A.
, Boiko
, A.V.
, Klingmann
, B.G.B.
, Kozlov
, V.V.
, and Alfredsson
, P.H.
, 1994
, “Experiments in a Boundary Layer Subjected to Free Stream Turbulence—Part 1: Boundary Layer Structure and Receptivity
,” J. Fluid Mech.
, 281
, pp. 193
–218
.27.
Neel
, R.E.
, Walters
, R.W.
, and Simpson
, R.L.
, 1998
, “Computations of Steady and Unsteady Low-Speed Turbulent Separated Flows
,” AIAA J.
, 36
(7
), pp. 1208
–1215
.28.
Cebeci, T., and Smith, A.M.O., 1974, Analysis of Turbulent Boundary Layers, Academic Press, San Diego, CA.
29.
Byvaltsev
, P.M.
, 1992
, “A Method of Calculating the Flow Around and Aerodynamic Design of the Profiles of Turbomachinery Blade Rows
,” Comput. Maths Math. Phys.
, 32
(4
), pp. 509
–519
.Copyright © 2005
by ASME
You do not currently have access to this content.