Pronounced nonuniformities in combustor exit flow temperature (hot-streaks), which arise because of discrete injection of fuel and dilution air jets within the combustor and because of endwall cooling flows, affect both component life and aerodynamics. Because it is very difficult to quantitatively predict the effects of these temperature nonuniformities on the heat transfer rates, designers are forced to budget for hot-streaks in the cooling system design process. Consequently, components are designed for higher working temperatures than the mass-mean gas temperature, and this imposes a significant overall performance penalty. An inadequate cooling budget can lead to reduced component life. An improved understanding of hot-streak migration physics, or robust correlations based on reliable experimental data, would help designers minimize the overhead on cooling flow that is currently a necessity. A number of recent research projects sponsored by a range of industrial gas turbine and aero-engine manufacturers attest to the growing interest in hot-streak physics. This paper presents measurements of surface and endwall heat transfer rate for a high-pressure (HP) nozzle guide vane (NGV) operating as part of a full HP turbine stage in an annular transonic rotating turbine facility. Measurements were conducted with both uniform stage inlet temperature and with two nonuniform temperature profiles. The temperature profiles were nondimensionally similar to profiles measured in an engine. A difference of one-half of an NGV pitch in the circumferential (clocking) position of the hot-streak with respect to the NGV was used to investigate the affect of clocking on the vane surface and endwall heat transfer rate. The vane surface pressure distributions, and the results of a flow-visualization study, which are also given, are used to aid interpretation of the results. The results are compared to two-dimensional predictions conducted using two different boundary layer methods. Experiments were conducted in the Isentropic Light Piston Facility (ILPF) at QinetiQ Farnborough, a short-duration engine-sized turbine facility. Mach number, Reynolds number, and gas-to-wall temperature ratios were correctly modeled. It is believed that the heat transfer measurements presented in this paper are the first of their kind.

1.
Parker
,
R.
, and
Watson
,
J. F.
, 1972, “
Interaction Effects Between Blade Rows in Turbomachines
,”
Proc. Inst. Mech. Eng.
0020-3483,
186
(
21
), pp.
331
340
.
2.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient and Flow History
,”
J. Mech. Eng. Sci.
0022-2542,
22
(
5
), pp.
213
228
.
3.
Narasimha
,
R.
, 1985,
The Laminar-Turbulent Transition Zone in the Boundary Layer
,”
Prog. Aerosp. Sci.
0376-0421,
22
, pp.
29
80
.
4.
Fraser
,
C. J.
,
Higazy
,
M. G.
, and
Milne
,
J. S.
, 1994, “
End-Stage Boundary Layer Transition Models for Engineering Calculations
,”
J. Mech. Eng. Sci.
0022-2542,
208
, pp.
47
58
.
5.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
(
Mechanical Engineering Series
), 3rd ed.,
McGraw-Hill
,
New York
.
6.
Klein
,
A.
, 1969, “
Investigation of the Entry Boundary Layer on the Secondary Flows in the Blading of Axial Turbines
,” (English Translation) BHRA T-1004.
7.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
, 1977, “
Three Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
99
, pp.
21
28
.
8.
Sieverding
,
C. H.
, 1985, “
Secondary Flows in Straight and Annular Turbine Cascades
,”
A. Ş
Uçer
,
P.
Stow
, and
Ch.
Hirsch
, eds.,
Thermodynamics and Fluids of Turbomachinery
, Vol.
II
,
NATO
, pp.
621
624
.
9.
Dunn
,
M. G.
, and
Stoddard
,
F. J.
, 1979, “
Measurement of Heat-Transfer Rate to a Gas Turbine Stator
,”
ASME J. Eng. Power
0022-0825,
101
(
2
), pp.
275
280
.
10.
Wedlake
,
E. T.
,
Brooks
,
A. J.
, and
Harasgama
,
S. P.
, 1988, “
Aerodynamic and Heat Transfer Measurements on a Transonic Nozzle Guide Vane
,” ASME Paper No. 88-GT-10.
11.
Taulbee
,
D. L.
,
Tran
,
L.
, and
Dunn
,
M. G.
, 1989, “
Stagnation Point and Surface Heat Transfer for a Turbine Stage: Prediction and Comparison With Data
,”
ASME J. Turbomach.
0889-504X,
111
(
1
), pp.
28
35
.
12.
Harvey
,
N. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
, 1989, “
Detailed Heat Transfer Measurements in Linear and Annular Cascades in the Presence of Secondary Flows
,” AGARD PEP 74B, pp.
24
-1–
24.12
.
13.
Harvey
,
N. W.
, 1991, “
Heat Transfer on Nozzle Guide Vane End Walls
,” D.Phil Thesis, Dept. Eng. Sci., University of Oxford, Oxford, UK.
14.
Harvey
,
N. W.
, and
Jones
,
T. V.
, 1990, “
Measurement and Calculation of Endwall Heat Transfer and Aerodynamics on a Nozzle Guide Vane in Annular Cascade
,” ASME Paper No. 90-GT-301.
15.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer With Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
524
529
.
16.
Gaugler
,
R. E.
, and
Russell
,
L. M.
, 1984, “
Comparison of Visualised Turbine Endwall Secondary Flows and Measured Heat Transfer Patterns
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
168
172
.
17.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Coupland
,
J.
, and
Jones
,
T. V.
, 1998, “
Measurement and Calculation of Nozzle Guide Vane End Wall Heat Transfer
,” ASME Paper No. 98-GT-66.
18.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
184
190
.
19.
Kang
,
M. B.
, and
Thole
,
K. A.
, 1999, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,” ASME Paper No. 99-GT-188.
20.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
613
621
.
21.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1999, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
772
780
.
22.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2004, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,” ASME Paper No. GT-2004–53326.
23.
Oke
,
R.
,
Simon
,
T.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
Y. L.
, and
Chyu
,
M.
, 2001, “
Measurements Over a Film-Cooled Contoured Endwall With Various Coolant Injection Rates
,” ASME Paper No. 2001-GT-140.
24.
Colban
,
W. F.
, and
Thole
,
K. A.
, 2003,
Combustor Turbine Interface Studies—Part I: Endwall Effectiveness Measurements
,”
J. Turbomach.
0889-504X,
125
, pp.
193
202
.
25.
Haselbach
,
F.
, and
Schiffer
,
H. P.
, 2004, “
Aerothermal Investigations of Turbine Endwalls and Blade
,” ASME Paper No. GT-2004-53078.
26.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
, 1989, “
Redistribution of Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
0748-4658,
5
(
1
), pp.
64
71
.
27.
Munk
,
M.
, and
Prim
,
R. C.
, 1947, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
33
, pp.
137
141
.
28.
Hurrion
,
J.
, 2002, “
The Effect of an Inlet Temperature Profile on the Heat Transfer to Gas Turbine Blades
,” D.Phil. thesis, University of Oxford, Oxford, UK.
29.
Povey
,
T.
,
Chana
,
K. S.
, and
Jones
,
T. V.
, 2003, “
Heat Transfer Measurements on an Intermediate Pressure Nozzle Guide Vane Tested in a Rotating Annular Turbine Facility—and the Modifying Effects of a Non-Uniform Inlet Temperature Profile
,”
MIS Q.
0276-7783,
217
, Part A: Journal of Power and Energy, pp.
421
431
.
30.
Chana
,
K. S.
, and
Jones
,
T. V.
, 2002, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,” ASME Paper No. GT-2002-30554.
31.
Shang
,
T.
, 1995, “
Influence of Inlet Temperature Distortion on Turbine Heat Transfer
,” Doctoral Thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA.
32.
Shang
,
T.
, and
Epstein
,
A. H.
, 1996, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,” ASME Paper No. 96-GT-118.
33.
Schwab
,
J. R.
,
Stabe
,
R. G.
, and
Whitney
,
W. J.
, 1983, “
Analytical and Experimental Study of Flow Through an Axial Turbine Stage With Nonuniform Inlet Radial Temperature Profiles
,” NASA Technical Memorandum 83431, AIAA 83-1175.
34.
Stabe
,
R. G.
,
Whitney
,
W. J.
, and
Moffitt
,
T. P.
, 1984, “
Performance of a High-Work Low Aspect Ratio Turbine Tested With a Realistic Inlet Radial Temperature Profile
,” NASA Technical Memorandum 83655, AIAA Paper No. 84–1161.
35.
Roback
,
R. J.
, and
Dring
,
R. P.
, 1993, “
Hot Streaks and Phantom Cooling in a Turbine Rotor Passage: Part 1—Separate Effects
,”
ASME J. Turbomach.
0889-504X,
115
(
4
), pp.
657
666
.
36.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2004, “
Developing a Combustor Simulator for Investigating High Pressure Turbine Aerodynamics and Heat Transfer
,”
ASME Turbo Expo 2004
,
Vienna
, Austria, June 14–17, ASME Paper No. GT-2004-53613.
37.
Varadarajan
,
K.
, and
Bogard
,
D. G.
, 2004, “
Effect of Hot Streaks on Adiabatic Effectiveness for a Film Cooled Turbine Vane
,” ASME Paper No. GT-2004–54016.
38.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
, 2004, “
The Effects of the Vane and Mainstream Turbulence Levels on Hot Streak Attenuation
,” ASME Paper No. ASME GT-2004–54022.
39.
Jenkins
,
S. C.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
, 2003, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,” ASME Paper No. GT-2003–38575.
40.
Busby
,
J.
,
Sondak
,
D.
,
Staubach
,
B.
, and
Davis
,
R.
, 2000, “
Deterministic Stress Modelling of Hot Gas Segregation in a Turbine
,”
ASME J. Turbomach.
0889-504X,
122
(
1
), pp.
62
67
.
41.
Dorney
,
D. J.
, and
Sondak
,
D. L.
, 2000, “
Effects of Tip Clearance on Hot Streak Migration in a High-Subsonic Single Stage Turbine
,” ASME Paper No. 2000-GT-441.
42.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
, 2000, “
Effects of Radial Location on the Migration of Hot Streaks in a Turbine
,”
J. Propul. Power
0748-4658,
16
(
3
), pp.
377
387
.
43.
Orkwis
,
P. D.
,
Turner
,
M. G.
, and
Barter
,
J. W.
, 2000, “
Linear Deterministic Source Terms for Hot Streak Simulations
,” ASME Paper No. 2000-GT-0509.
44.
Prasad
,
D.
, and
Hendricks
,
G. J.
, 2000, “
A Numerical Study of Secondary Flow in Axial Turbines With Application to Radial Transport of Hot Streaks
,”
ASME Turbo Expo 2000
, ASME Paper No. 2000-GT-0448.
45.
Dong
,
S. Y.
,
Liu
,
S. L.
, and
Zhu
,
H. R.
, 2001, “
Inviscid Numerical Simulation of Unsteady Flow in a Turbine Stage With Inlet Temperature Distortion
,”
J. Northwest. Polytechnical Univ.
1000-2758,
19
(
3
), pp.
345
348
.
46.
Sondak
,
D.
, L.,
Gupta
,
V.
,
Orkwis
,
P. D.
, and
Dorney
,
D. J.
, 2002, “
Effects of Blade Count on Linearized and Nonlinear Hot Streak Clocking Simulations
,”
J. Propul. Power
0748-4658,
18
(
6
), pp.
1273
1279
.
47.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
, 2004, “
Influence of Hot Streak Circumferential Length Scale in Transonic Turbine Stage
,” ASME Paper No. GT-2004–53370.
48.
Hilditch
,
M. A.
,
Fowler
,
A.
,
Jones
,
T. V.
,
Chana
,
K. S.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
,
Hogg
,
S. I.
,
Anderson
,
S. J.
, and
Smith
,
G. C.
, 1994, “
Installation of a Turbine Stage in the Pyestock Isentropic Light Piston Facility
,” ASME Paper No. 94-GT-277.
49.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Oldfield
,
M. L. G.
, 2003, “
The Design and Performance of a Transonic Flow Deswirling System—An Application of Current CFD Design Techniques Tested Against Model and Full-Scale Experiments
,”
Advances of CFD in Fluid Machinery Design
,
R. L.
Elder
,
A.
Tourlidakis
, and
M. K.
Yates
, eds.,
IMechE Professional Engineering Publishing
,
London
, pp.
65
94
.
50.
Goodisman
,
M. I.
,
Oldfield
,
M. L. G.
,
Kingcombe
,
R. C.
,
Jones
,
T. V.
,
Ainsworth
,
R. W.
, and
Brooks
,
A. J.
, 1992, “
An Axial Turbobrake
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
419
425
.
51.
Chana
,
K. S.
,
Hurrion
,
J. R.
, and
Jones
,
T. V.
, 2003, “
The Design, Development and Testing of a Non-Uniform Inlet Temperature Generator for the Qinetiq Transient Turbine Research Facility
,” ASME Paper No. GT-2003-38469.
52.
Oldfield
,
M. L. G.
, and
Doorly
,
J. E.
, 1996, “
New Heat Transfer Gauges for Use on Multi-Layered Substrates
,” ASME Paper No. 86-GT-96.
53.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
, 1987, “
The Theory of Advanced Heat Transfer Gauges
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
6
), pp.
1159
1168
.
54.
Jones
,
T. V.
, 1989, “
Recent Developments in Transient Heat Transfer Measurements
,” Eurotherm Seminar No. 9, Heat Transfer in Single Phase Flows, July 10–11, Bochum.
55.
Povey
,
T.
, 2003, “
On Advances in Annular Cascade Techniques
,” D.Phil. thesis, Department of Engineering Science, University of Oxford, Oxford, UK.
56.
Doorly
,
J. E.
, 1985, “
The Development of a Heat Transfer Measurement Technique for Application to Rotating Turbine Blades
,” D.Phil. thesis, University of Oxford, Oxford, UK.
57.
Epstein
,
A. H.
,
Guenette
,
G. R.
,
Norton
,
R. J. G.
, and
Yuzhang
,
G.
, 1986, “
High Frequency Response Heat Flux Gauges
,”
Rev. Sci. Instrum.
0034-6748,
57
(
4
), pp.
639
649
.
58.
Piccini
,
E.
,
Guo
,
S. M.
, and
Jones
,
T. V.
, 2000, “
The Development of a New Direct-Heat-Flux Gauge for Heat Transfer Facilities
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
342
349
.
59.
Lowery
,
G. W.
, and
Vachon
,
R. I.
, 1975, “
Effect of Turbulence on Heat Transfer from Heated Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
18
(
11
), pp.
1229
1242
.
60.
Krishnamoorthy
,
V.
, and
Sukhatme
,
S. P.
, 1989, “
The Effect of Free-Stream Turbulence on Gas Turbine Blade Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
497
501
.
61.
Crawford
,
M. E.
, and
Kays
,
W. M.
, 1976, “
STAN5: A Program for Numerical Computation of Two-Dimensional Internal and External Boundary Layer Flows
,” NASA Contractor Report CR-2742.
62.
Lam
,
C.
, and
Bremhorst
,
K.
, 1981, “
A Modified Form of the k-Epsilon Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
0098-2202,
103
, pp.
456
460
.
You do not currently have access to this content.