Abstract

Computational fluid dynamics (CFD) has recently been used for the simulation of the aerothermodynamics of film cooling. The direct calculation of a single cooling hole requires substantial computational resources. A parametric study, for the optimization of the cooling system in real engines, is much too time consuming due to the large number of grid nodes required to cover all injection holes and plenum chambers. For these reasons, a hybrid approach is proposed, based on the modeling of the near film-cooling hole flow, tuned using experimental data, while computing directly the flow field in the blade-to-blade passage. A new injection film-cooling model is established, which can be embedded in a CFD code, to lower the central processing unit (CPU) cost and to reduce the simulation turnover time. The goal is to be able to simulate film-cooled turbine blades without having to explicitly mesh inside the holes and the plenum chamber. The stability, low CPU overhead level (1%) and accuracy of the proposed CFD-embedded film-cooling model are demonstrated in the ETHZ steady film-cooled flat-plate experiment presented in Part I (Bernsdorf, Rose, and Abhari, 2006, ASME J. Turbomach., 128, pp. 141–149) of this two-part paper. The prediction of film-cooling effectiveness using the CFD-embedded model is evaluated.

1.
Bergeles
,
G.
,
Gosman
,
A. D.
, and
Launder
,
B. E.
, 1981, “
The Prediction of Three-Dimensional Discrete-Hole Cooling Processes—Part 2
,”
ASME J. Heat Transfer
0022-1481,
103
, pp.
141
145
.
2.
Demuren
,
A. O.
,
Rodi
,
W.
, and
Schönung
,
B.
, 1986, “
Systematic Study of Film Cooling With a Three-Dimensional Calculation Procedure
,”
ASME J. Turbomach.
0889-504X,
108
(
3
), pp.
124
130
.
3.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
, 1994, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
358
368
.
4.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film-Cooling Physics—Part I: Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
(
1
), pp.
102
112
.
5.
Lakehal
,
D.
, 2002, “
Near-Wall Modeling of Turbulent Convective Heat Transport in Film Cooling of Turbine Blades With the Aid of Direct Numerical Simulation Data
,”
ASME J. Turbomach.
0889-504X,
124
(
3
), pp.
485
498
.
6.
Garg
,
V. K.
, and
Gaugler
,
R. E.
, 1997, “
Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
343
445
.
7.
Garg
,
V. K.
, and
Abhari
,
R. S.
, 1997, “
Comparison of Predicted and Experimental Nusselt Number for a Film-Cooled Rotating Blade
,”
Int. J. Heat Fluid Flow
0142-727X,
18
, pp.
452
460
.
8.
Heidmann
,
J. D.
,
Rigby
,
D. L.
, and
Ameri
,
A. A.
, 2000, “
A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
348
359
.
9.
Crawford
,
M. E.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
, 1976, “
Heat Transfer to a Full Coverage Film-Cooled Surface With 30° Slant-Hole Injection
,” NASA Contractor Report No. CR-2786.
10.
Schönung
,
B.
, and
Rodi
,
W.
, 1987, “
Predictions of Film Cooling by a Row of Holes With a Two-Dimensional Boundary-Layer Procedure
,”
ASME J. Turbomach.
0889-504X,
109
(
4
), pp.
579
587
.
11.
Haas
,
W.
,
Rodi
,
W.
, and
Schönung
,
B.
, 1992, “
The Influence of Density Difference Between Hot and Coolant Gas on Film Cooling by a Row of Holes: Predictions and Experiments
,”
ASME J. Turbomach.
0889-504X,
114
(
4
), pp.
747
755
.
12.
Tafti
,
D. K.
, and
Yavuzkurt
,
S.
, 1990, “
Prediction of Heat Transfer Characteristics for Discrete Hole Film Cooling for Turbine Blade Applications
,”
ASME J. Turbomach.
0889-504X,
112
(
3
), pp.
504
511
.
13.
Abhari
,
R. S.
, 1996, “
Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
118
(
1
), pp.
123
133
.
14.
Kulisa
,
P.
,
Leboeuf
,
F.
, and
Perrin
,
G.
, 1992, “
Computation of a Wall Boundary Layer With Discrete Jet Injections
,”
ASME J. Turbomach.
0889-504X,
114
(
4
), pp.
756
764
.
15.
Dalhander
,
P.
,
Abrahamsson
,
H.
,
Martensson
,
H.
, and
Hall
,
U.
, 1998, “
Numerical Simulation of a Film Cooled Nozzle Guide Vane Using an Injection Model
,” ASME Paper No. 98-GT-439.
16.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2006, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
141
149
.
17.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
65
73
.
18.
Morton
,
B. R.
, and
Ibbetson
,
A.
, 1996, “
Jets Deflected in a Crossflow
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
112
133
.
19.
Abramovich
,
G. N.
, 1963,
The Theory of Turbulent Jets
,
MIT Press
, Cambridge, MS.
20.
Oseen
,
C. W.
, 1911, “
Über die Stokes’sche Formel und über eine Verwandte Aufgabe in der Hydrodynamik
,”
Ark. Mat.
0004-2080,
6
(
29
).
21.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Method for Correlating Discharge Coefficients of Film-Cooling Holes
,”
AIAA J.
0001-1452,
36
(
6
), pp.
976
980
.
22.
Rydholm
,
H. A.
, 1998, “
An Experimental Investigation of the Velocity and Temperature Fields of Cold Jets Injected Into a Hot Crossflow
,”
ASME J. Turbomach.
0889-504X,
120
(
2
), pp.
320
326
.
23.
Ni
,
R. H.
, 1981, “
A Multiple Grid Scheme for Solving the Euler Equations
,”
AIAA J.
0001-1452,
20
(
11
), pp.
1565
1571
.
24.
Burdet
,
A.
, and
Lakehal
,
D.
, 2002, “
MULTI3—A Compressible Navier-Stokes Solver for 3D Turbomachinery Flow Simulation
,” Internal Report No. LSM-01-02, LSM, ETH-Zürich, Switzerland.
25.
Burdet
,
A.
,
Mischo
,
B.
,
Lakehal
,
D.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
Predicting Vorticity Transport and Loss Generation Downstream of a Turbine Annular Cascade
,”
Proc., of 5th European Conference on Turbomachinery
, M. Stastny, C. H. Sieverding, and G. Bois, Prague, Czech Republic, pp.
995
1006
.
26.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
(
1
), pp.
63
70
.
27.
Tseng
,
Y.-H.
, and
Ferziger
,
J. H.
, 2003, “
A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry
,”
J. Comput. Phys.
0021-9991,
192
, pp.
593
623
.
28.
Burdet
,
A.
, and
Abhari
,
R. S.
, 2006, “
A Computationally Efficient Film Cooling Jet Model Using the Implicit Immersed Boundary Method
,”
Comput. Fluids
0045-7930, submitted.
29.
Kaszeta
,
R. W.
, and
Simon
,
T. W.
, 2000, “
Measurement of Eddy Diffusivity of Momentum in Film Cooling Flows With Streamwise Injection
,”
ASME J. Turbomach.
0889-504X,
122
(
1
), pp.
178
183
.
You do not currently have access to this content.