The aerodynamics and kinematics of flow structures, including the loss generation mechanisms, in the interstage region of a two-stage partially shrouded axial turbine are examined. The nonaxisymmetric partial shroud introduces highly three-dimensional unsteady interactions, the details of which must be understood in order to optimize the design of the blade/shroud. Detailed measurements of the steady and unsteady pressure and velocity fields are obtained using a two-sensor fast response aerodynamic probe and stereoscopic particle image velocimetry. These intrusive and nonintrusive measurement techniques yield a unique data set that describes the details of the flow in the interstage region. The measurements show that a highly three-dimensional interaction occurs between the passage vortex and a vortex caused by the recessed shroud platform design. Flow coming from the blade passage suddenly expands and migrates radially upward in the cavity region, causing a localized relative total pressure drop. Interactions of vortex and wake structures with the second stator row are analyzed by means of the combination of the measured relative total pressure and nondeterministic pressure unsteadiness. The analysis of the data gives insight on unsteady loss mechanisms. This study provides improved flow understanding and suggests that the design of the blade/shroud and second stator leading edge may be further improved to reduce unsteady loss contribution.

1.
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2005, “
Vortex-Wake-Blade Interaction in a Shrouded Axial Turbine
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
633
707
.
2.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Horwood
,
C. K.
, 2003, “
Time-Resolved Vane-Rotor Interaction in a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
1
13
.
3.
Pfau
,
A.
,
Schlienger
,
J.
,
Rusch
,
D.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2005, “
Unsteady Flow Interaction Within the Inlet Cavity of a Turbine Rotor Tip Labyrinth Seal
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
679
688
.
4.
Gaetani
,
P.
,
Persico
,
G.
,
Dossena
,
V.
, and
Osnaghi
,
C.
, 2006, “
Investigation of the Flow-Field on a HP Turbine Stage for Two Stator-Rotor Axial Gaps. Part II: Unsteady Flow Field
,” ASME Paper No. IGTI GT2006-90556.
5.
Wernet
,
M. P.
, 2000, “
Application of DPIV to Study Both Steady State and Transient Turbomachinery Flows
,”
Opt. Laser Technol.
0030-3992,
32
, pp.
497
525
.
6.
Balzani
,
N.
,
Scarano
,
F.
,
Riethmuller
,
M. L.
, and
Breugelmans
,
F. A. E.
, 2000, “
Experimental Investigation of the Blade-to-Blade in a Compressor Rotor by Digital Particle Image Velocimetry
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
743
750
.
7.
Sanders
,
A. J.
,
Papalia
,
J.
, and
Fleeter
,
S.
, 2002, “
Multi-Blade Row Interactions in a Transonic Axial Compressor: Part I—Stator Particle Image Velocimetry (PIV) Investigation
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
10
18
.
8.
Uzol
,
O.
,
Chow
,
Y. C.
,
Katz
,
J.
, and
Meneveau
,
C.
, 2002, “
Experimental Investigation of Unsteady Flow Field Within a Two-Stage Axial Turbomachine Using Particle Image Velocimetry
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
542
552
.
9.
Ibaraki
,
S.
,
Matsuo
,
T.
, and
Yokoyama
,
T.
, 2006, “
Investigation of Unsteady Flow Field in Vaned Diffuser of a Centrifugal Compressor
,” ASME Paper No. GT2006-90268.
10.
Estevadeordal
,
J.
,
Gogineni
,
S.
,
Goss
,
L.
,
Copenhaver
,
W.
, and
Gorrell
,
S.
, 2002, “
Study of Wake-Blade Interactions in a Transonic Compressor Using Flow Visualization and DPIV
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
166
175
.
11.
Liu
,
B.
,
Wang
,
H.
,
Liu
,
H.
,
Yu
,
H.
,
Jiang
,
H.
, and
Chen
,
M.
, 2004, “
Experimental Investigation of Unsteady Field in the Tip Region of an Axial Compressor Rotor Passage at Near Stall Condition with Stereoscopic Particle Image Velocimetry
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
360
370
.
12.
Göttlich
,
E.
,
Woisetschläger
,
J.
,
Pieringer
,
P.
,
Hampel
,
B.
, and
Heitmeir
,
F.
, 2005, “
Investigation of Vortex Shedding and Wake-Wake Interaction in a Transonic Turbine Stage using Laser-Doppler-Velocimetry and Particle Image Velocimetry
,” ASME Paper No. GT2005-68579.
13.
Dorris
,
A. R.
,
North
,
W. E.
, and
Malandra
,
A. J.
, 1996, “
Gas Turbine Blade Having a Cooled Shroud
,” U.S. Patent No. 5,482,435.
14.
Tomita
,
Y.
, 1998, “
Gas Turbine Rotor
,” U.S. Patent No. 5785496.
15.
Nirmalan
,
N. V.
, and
Bailey
,
J. C.
, 2005, “
Experimental Investigation of Aerodynamic Losses of Different Shapes of a Shrouded Blade Tip Section
,” ASME Paper No. IGTI GT2005-68903.
16.
Harvey
,
N. W.
, and
Ramsden
,
K.
, 2001, “
A Computational Study of a Novel Turbine Rotor Partial Shroud
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
534
543
.
17.
Willer
,
L.
,
Harvey
,
N. W.
,
Haselbach
,
F.
, and
Newman
,
D. A.
, 2006, “
An Investigation Into Novel Turbine Rotor Winglet—Part II: Numerical Results and Experimental Results
,” ASME Paper No. IGTI GT2006-90459.
18.
Porreca
,
L.
,
Behr
,
T.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Ehrhard
,
J.
, and
Janke
,
E.
, 2005, “
Fluid Dynamics and Performance of Partially and Fully Shrouded Axial Turbines
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
668
678
.
19.
Prasad
,
A. K.
, 2000, “
Stereoscopic Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
29
, pp.
103
116
.
20.
Kähler
,
C. J.
,
Sammler
,
B.
, and
Kompenhans
,
J.
, 2002, “
Generation and Control of Tracer Particles for Optical Flow Investigations in Air
,”
Exp. Fluids
0723-4864,
33
, pp.
736
742
.
21.
Mellin
,
A.
, 1997, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1496
1416
.
22.
Zang
,
W. J.
, and
Prasad
,
A. K.
, 1997, “
Performance Evaluation of a Scheimpflug Stereocamera for Particle Image Velocimetry
,”
Appl. Opt.
0003-6935,
36
, pp.
8738
8744
.
23.
Soloff
,
S. M.
,
Adrian
,
R. J.
, and
Liu
,
Z-.C.
, 1997, “
Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1441
1454
.
24.
Porreca
,
L.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Yun
,
Y. I.
, and
Song
,
S. J.
, 2006, “
Stereoscopic PIV Measurements in A two-Stage Axial Turbine
,”
The 18th Symposium on Measurement Techniques in Transonic and Supersonic Flow in Cascades and Turbomachinery
,
Thessaloniki
,
Greece
, September.
25.
Westerweel
,
J.
,
Dabiri
,
D.
, and
Gharib
,
M.
, 1997, “
The Effect of a Discrete Window Offset on the Accuracy of Cross-Correlation Analysis of Digital PIV Recordings
,”
Exp. Fluids
0723-4864,
23
, pp.
20
28
.
26.
Scarano
,
F.
, and
Riethmuller
,
M. L.
, 1999, “
Iterative Multigrid Approach in PIV Image Processing With Discrete Window Offset
,”
Exp. Fluids
0723-4864,
26
, pp.
513
523
.
27.
Westerweel
,
J.
, 1994, “
Efficient Detection of Spurious Vectors in Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
16
, pp.
237
247
.
28.
Raffel
,
M.
,
Willert
,
C.
, and
Kompenhans
,
J.
, 1998,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
Berlin
.
29.
Willert
,
C. E.
, and
Gharib
,
M.
, 1991, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
10
, pp.
181
193
.
30.
Keane
,
R. D.
, and
Adrian
,
R. J.
, 1992, “
Theory of Cross Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
0003-6994,
49
, pp.
191
215
.
31.
Porreca
,
L.
,
Hollenstein
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2007, “
Turbulence Measurements and Analysis in a Multistage Axial Turbine
,”
J. Propul. Power
0748-4658,
23
(
1
), pp.
227
234
.
32.
Gizzi
,
W. P.
,
Roudener
,
C.
,
Stahlecker
,
D.
,
Köppel
,
P.
, and
Gyarmathy
,
G.
, 1999, “
Time-Resolved Measurements With Fast-Response Probes and Doppler Velocimetry at the Impeller Exit of a Centrifugal Compressor: A Comparison of Two Measurement Techniques
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
213
, pp.
291
318
.
33.
Kupferschmied
,
P.
,
Köppel
,
P.
,
Gizzi
,
W.
,
Roudener
,
C.
, and
Gyarmathy
,
G.
, 1999, “
Time-Resolved Measurements in Fast-Response Aerodynamic Probes in Turbomachines
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
1036
1054
.
34.
Treiber
,
M.
,
Kupferschmied
,
P.
, and
Gyarmathy
,
G.
, 1998, “
Analysis of the Error Propagation Arising From the Measurements With a Miniature Pneumatic 5-Hole Probe
,”
XIVth Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascade and Turbomachines
.
35.
Rosic
,
B.
, and
Denton
,
J.
, 2006, “
The Control of Shroud Leakage Loss by Reducing Circumferential Mixing
,” ASME Paper No. GT2006-90949.
36.
Wallis
,
A. M.
,
Denton
,
J. D.
, and
Demargne
,
A. A. J.
, 2001, “
The Control of Shrouded Leakage Flows to Reduce Aerodynamic Losses in a Low Aspect Ratio, Shrouded Axial Flow Turbine
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
334
341
.
37.
Yun
,
Y. I.
,
Porreca
,
L.
,
Kalfas
,
A. I.
,
Song
,
S. J.
, and
Abhari
,
R. S.
, 2006, “
Investigation of 3D Unsteady Flows in a Two Stages Shrouded Axial Turbine Using Stereoscopic PIV and FRAP—Part II: Kinematics of Shroud Cavity Flow
,” ASME Paper No. GT2006-91020.
38.
Pullan
,
G.
,
Denton
,
J.
, and
Dunkley
,
M.
, 2003, “
An Experimental and Computational Study of a Streamwise Shed Vortex in a Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
291
297
.
You do not currently have access to this content.