In our previous work on ultralow-aspect ratio transonic turbine inlet guide vanes (IGVs) for a small turbofan engine (Hasenjäger et al., 2005, “Three Dimensional Aerodynamic Optimization for an Ultra-Low Aspect Ratio Transonic Turbine Stator Blade,” ASME Paper No. GT2005-68680), we used numerical stochastic design optimization to propose the new design concept of an extremely aft-loaded airfoil to improve the difficult-to-control aerodynamic loss. At the same time, it is well known that end wall contouring is an effective method for reducing the secondary flow loss. In the literature, both “axisymmetric” and “nonaxisymmetric” end wall geometries have been suggested. Almost all of these geometric variations have been based on the expertise of the turbine designer. In our current work, we employed a stochastic optimization method—the evolution strategy—to optimize and analyze the effect of the axisymmetric end wall contouring on the IGV’s performance. In the optimization, the design of the end wall contour was divided into three different approaches: (1) only hub contour, (2) only tip contour, and (3) hub and tip contour, together with the possibility to observe the correlation between hub/tip changes with regard to their joint influence on the pressure loss. Furthermore, three-dimensional flow mechanisms, related to a secondary flow near the end wall region in the low-aspect ratio transonic turbine IGV, was investigated, based on the above optimization results. A design concept and secondary flow characteristics for the low-aspect ratio full annular transonic turbine IGV is discussed in this paper.

1.
Klein
,
A.
, 1966, “
Investigation of the Entry Boundary Layer on the Secondary Flows in the Blading of Axial Turbines
,” BHRA T1004.
2.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
, 1977, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
99
, pp.
21
28
.
3.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
102
(
4
), pp.
866
874
.
4.
Sieverding
,
C. H.
, and
Van den Bosch
,
P.
, 1983, “
The Use of Coloured Smoke to Visualize Secondary Flows in a Turbine-Blade Cascade
,”
J. Fluid Mech.
0022-1120,
134
, pp.
85
89
.
5.
Sonoda
,
T.
, 1985, “
Experimental Investigation on Spatial Development of Streamwise Vortices in a Turbine Inlet Guide Vane Cascade
,” ASME Paper No. 85-GT-20.
6.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
, 1997, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
1
8
.
7.
Deich
,
M. E.
,
Zaryankin
,
A. E.
,
Fillipov
,
G. A.
, and
Zatsepin
,
M. F.
, 1960, “
Method of Increasing the Efficiency of Turbine Stages With Short Blades
,” Translation No. 2816, Associated Electrical Industries Ltd., Manchester, England.
8.
Ewen
,
J. S.
,
Huber
,
F. W.
, and
Mitchell
,
J. P.
, 1973, “
Investigation of the Aerodynamic Performance of a Small Axial Turbine
,” ASME Paper No. 73-GT-3.
9.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
, 1975, “
Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling
,” ASME Paper No. 75-WA/GT-13.
10.
Kopper
,
F. C.
,
Milano
,
R.
, and
Vanco
,
M.
, 1981, “
Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade
,”
AIAA J.
0001-1452,
19
(
8
), pp.
1033
1040
.
11.
Boletis
,
E.
, 1985, “
Effects of Tip Endwall Contouring on the Three-Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane: Part 1—Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
983
990
.
12.
Haas
,
J. E.
, 1982, “
Analytical and Experimental Investigation of Stator Endwall Contouring in a Small Axial-Flow Turbine. 1—Stator Performance
,” NASA Report No. TP-2023.
13.
Moustapha
,
S. H.
, and
Williamson
,
R. G.
, 1985, “
Investigation of the Effect of Two Endwall Contours on the Performance of an Annular Nozzle Cascade
,” AIAA Paper No. 85–1218.
14.
2000,
Evolutionary Computation 1: Basic Algorithms and Operators
,
T.
Baeck
,
D. B.
Fogel
, and
T.
Michalewicz
, eds.,
Institute of Physics
,
University of Reading, Berkshire
.
15.
Osyczka
,
A.
, 2002,
Evolutionary Algorithms for Single and Multicriteria Design Optimization
,
Physica
,
Heidelberg
.
16.
Hansen
,
N.
, and
Ostermeier
,
A.
, 2001, “
Completely Derandomized Self-Adaptation in Evolution Strategies
,”
Evol. Comput.
1063-6560,
9
(
2
), pp.
159
195
.
17.
Farin
,
G.
, 1997,
Curves and Surfaces for Computer-Aided Geometric Design
, 4th ed.,
Academic
,
San Diego
.
18.
Arima
,
T.
,
Sonoda
,
T.
,
Shirotori
,
M.
,
Tamura
,
A.
, and
Kikuchi
,
K.
, 1999, “
A Numerical Investigation of Transonic Axial Compressor Rotor Flow Using a Low-Reynolds-Number k-ε Turbulence Model
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
44
58
.
19.
Wilcox
,
D. C.
, 1988, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
0001-1452
26
, pp.
1299
1310
.
20.
Geist
,
A.
,
Beguelin
,
A.
,
Dongarra
,
J.
,
Jiang
,
W.
,
Mancheck
,
R.
, and
Sunderam
,
V.
, 1994,
PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Network Parallel Computing
,
MIT
,
Cambridge, MA
.
21.
MPI: A message-passing interface standard, http://www-unix.mcs.anl.gov/mpi/http://www-unix.mcs.anl.gov/mpi/
22.
Chien
,
J. Y.
, 1982, “
Predictions of Channel and Boundary Layers With a Low-Reynolds-Number Two Equation Model of Turbulence
,”
AIAA J.
0001-1452,
20
, pp.
33
38
.
23.
Sonoda
,
T.
,
Arima
,
T.
,
Olhofer
,
M.
,
Sendhoff
,
B.
,
Kost
,
F.
, and
Giess
,
P.-A.
, 2006, “
A Study of Advanced High Loaded Transonic Turbine Airfoils
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
650
657
.
24.
Hasenjäger
,
M.
,
Sendhoff
,
B.
,
Sonoda
,
T.
, and
Arima
,
T.
, 2005, “
Three Dimensional Aerodynamic Optimization for an Ultra-Low Aspect Ratio Transonic Turbine Stator Blade
,” ASME Paper No. GT2005–68680.
You do not currently have access to this content.