The paper presents an experimental study of heat∕mass transfer coefficient in 4:1 aspect ratio smooth channels with nonuniform cross sections. Curved leading and trailing edges are studied for two curvatures of 9.06 m1 (0.23 in.1) and 15.11 m1 (0.384 in.1) and for two different curvature configurations. One configuration has curved walls with curvature corresponding to the blade profile (positive curvature on both leading and trailing walls) and the other configuration has leading and trailing walls that curve inward into the coolant passage (negative curvature on the leading surface and positive curvature on the trailing surface). A detailed study at Re=10,000 with rotation numbers in the range of 0–0.07 is undertaken for the two different curvature configurations. All experiments are done for a 90 deg passage orientation with respect to the plane of rotation. The experiments are conducted in a rotating two-pass coolant channel facility using the naphthalene sublimation technique. Only the radially outward flow is considered for the present study. The spanwise mass transfer distributions of fully developed regions of the channel walls are also presented. The mass transfer data from the curved wall channels are compared to those from a smooth 4:1 rectangular duct with similar flow parameters. The local mass transfer data are analyzed mainly for the fully developed region, and area-averaged results are presented to delineate the effect of the rotation number. Heat transfer enhancement especially in the leading wall is seen for the lower curvature channels, and there is a subsequent reduction in the higher curvature channel when compared to the 4:1 rectangular smooth channel. This indicates that an optimal channel wall curvature exists for which heat transfer is the highest.

1.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
, 1991, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
321
330
.
2.
Johnson
,
B. V.
,
Wagner
,
J. H.
, and
Steuber
,
G. D.
, 1993, “
Effects of Rotation on Coolant Passage Heat Transfer
,” NASA Contractor Report No. 4396, Vol.
II
.
3.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
, and
Ou
,
S.
, 1992, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
11
), pp.
2891
2903
.
4.
Kukreja
,
R. T.
,
Park
,
C. W.
, and
Lau
,
S. C.
, 1998, “
Heat (Mass) Transfer in a Rotating Two Pass Square Channel-Part-II: Local Transfer Coefficient, Smooth Channel
,”
Int. J. Rotating Mach.
1023-621X,
4
(
1
), pp.
1
15
.
5.
Zhang
,
N.
,
Chiou
,
J.
,
Fann
,
S.
, and
Yang
,
W.-J.
, 1993, “
Local Heat Transfer Distribution in a Rotating Serpentine Rib-Roughened Flow Passage
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
560
567
.
6.
Myrum
,
T.
,
Acharya
,
S.
,
Sinha
,
S.
, and
Qiu
,
X.
, 1996, “
The Effect of Placing Vortex Generators Above Ribs in Ribbed Ducts on the Flow, Flow Temperature, and Heat Transfer Behavior
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
294
300
.
7.
Eliades
,
V.
,
Nikitopoulos
,
D. E.
, and
Acharya
,
S.
, 2001, “
Mass Transfer Distribution in Rotating, Two-Pass Ribbed Channels With Vortex Generators
,”
J. Thermophys. Heat Transfer
0887-8722,
15
(
3
), pp.
266
274
.
8.
Acharya
,
S.
,
Eliades
,
V.
, and
Nikitopoulos
,
D. E.
, 2001, “
Heat Transfer Enhancements in Rotating Two-Pass Coolant Channels With Profiled Ribs: Average Results
,”
ASME J. Turbomach.
0889-504X,
23
(
1
), pp.
97
106
.
9.
Nikitopoulos
,
D. E.
,
Eliades
,
V.
, and
Acharya
,
S.
, 2001, “
Heat Transfer Enhancements in Rotating Two-Pass Coolant Channels With Profiled Ribs: Detailed Measurements
,”
ASME J. Turbomach.
0889-504X,
23
(
1
), pp.
107
114
.
10.
Zhou
,
F.
, and
Acharya
,
S.
, 2001, “
Mass∕Heat Transfer in Dimpled Turbine-Blade Coolant Passages
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
424
431
.
11.
Agarwal
,
P.
,
Acharya
,
S.
, and
Nikitopoulos
,
D. E.
, 2003, “
Heat Transfer in 1:4 Rectangular Passages
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
726
733
.
12.
Han
,
J. C.
,
Ou
,
S.
,
Park
,
J. S.
, and
Lei
,
C. K.
, 1989, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
699
1630
.
13.
Han
,
J. C.
, 1988, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
321
328
.
14.
Han
,
J. C.
, and
Zhang
,
P.
, 1989, “
Pressure Loss Distribution in Three-Pass Rectangular Channels With Rib Turbulators
,”
ASME J. Turbomach.
0889-504X,
111
(
4
), pp.
515
521
.
15.
Zhang
,
Y. M.
,
Gu
,
W. Z.
, and
Han
,
J. C.
, 1994, “
Heat Transfer and Friction in Rectangular Channels With Ribbed or Ribbed-Grooved Walls
,”
ASME J. Heat Transfer
0022-1481,
116
(
1
), pp.
58
65
.
16.
Dutta
,
S.
,
Andrews
,
M. J.
, and
Han
,
J. C.
, 1996, “
Prediction of Turbulent Heat Transfer in Rotating Smooth Square Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
12
), pp.
2505
2514
.
17.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
, 1992, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
847
857
.
18.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
, 1994, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
113
123
.
19.
Murata
,
A.
, and
Mochizuki
,
S.
, 1999, “
Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Smooth Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3803
3814
.
20.
Saha
,
A. K.
, and
Acharya
,
S.
, 2005, “
Unsteady RANS Simulations of Turbulent Flow and Heat Transfer in Ribbed Coolant Passages of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4704
4725
.
21.
Soong
,
C. Y.
,
Lin
,
S. T.
, and
Hwang
,
G. J.
, 1991, “
An Experimental Study of Convective Heat Transfer in Radially Rotating Rectangular Ducts
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
604
611
.
22.
Morris
,
W. D.
, and
Ghavami-Nasr
,
G.
, 1991, “
Heat Transfer Measurements in Rectangular Channels With Orthogonal Mode Rotation
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
339
345
.
23.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
, 2005, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR=4:1) With Angled Ribs
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
378
387
.
24.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
, 2002, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Angled Ribs
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
617
625
.
25.
Chung
,
J. H.
, and
Hyun
,
J. M.
, 1992, “
Convective Heat Transfer in the Developing Flow Region of a Square Duct With Strong Curvature
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
10
), pp.
2537
2550
.
26.
Arnal
,
M. P.
,
Goering
,
D. J.
, and
Humphrey
,
J. A. C.
, 1992, “
Unsteady Laminar Flow Developing in Curved Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
13
(
4
), pp.
347
357
.
27.
Kim
,
J.
,
Simon
,
T. W.
, and
Russ
,
S. G.
, 1992, “
Free-Stream Turbulence and Concave Curvature Effects on Heated, Transitional Boundary Layers
,”
ASME J. Heat Transfer
0022-1481,
114
(
2
), pp.
338
347
.
28.
Chen
,
C. T.
, and
Lin
,
M. H.
, 2002, “
Effect of Rotation on Goertler Vortices in the Boundary Layer for a Curved Surface
,”
Int. J. Numer. Methods Fluids
0271-2091,
40
(
10
), pp.
1327
1346
.
29.
Laker
,
T. S.
, and
Ghiaasiaan
,
S. M.
, 2001, “
Secondary Flows in a Rotating Serpentine Circular Duct
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
424
(
1
), pp.
155
167
.
30.
Souza-Mendes
,
P. R.
, 1991, “
The Naphthalene Sublimation Technique
,”
Exp. Therm. Fluid Sci.
0894-1777,
4
, pp.
510
523
.
31.
McAdams
,
W.
, 1954,
Heat Transmission
, 3rd. ed.,
McGraw-Hill
,
New York
.
32.
Sogin
,
H. H.
, and
Providence
,
R. I.
, 1958, “
Sublimation From Disks to Air Streams Flowing Normal to Their Surfaces
,”
Trans. ASME
0097-6822,
80
, pp.
61
69
.
33.
Cho
,
K.
,
Irvine
,
T. F.
, Jr
, and
Karni
,
J.
, 1992, “
Measurement of Diffusion Coefficient of Naphthalene Into Air
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
4
), pp.
957
966
.
34.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
You do not currently have access to this content.