In the absence of instabilities, the large deterministic scales of turbomachinery flows resulting from the periodic rotation of blades can be considered periodic in time. Such flows are not simulated with enough efficiency when using classical unsteady techniques as a transient regime must be bypassed. New techniques, dedicated to time-periodic flows and based on Fourier analysis, have been developed recently. Among these, harmonic balance methods cast a time-periodic flow computation in several coupled steady flow computations. A time-domain harmonic balance method is derived and adapted to phase lag periodic conditions to allow the simulation of only one blade passage per row regardless of row blade counts. Sophisticated space and time interpolations are involved and detailed. The test case is a single stage subsonic compressor. A convergence study of the present harmonic balance is performed and compared with a reference well-resolved classical unsteady flow simulation. The results show, on one hand, the good behavior of the harmonic balance and its ability to correctly predict global quantities as well as local flow pattern; on the other hand, the simulation time is drastically reduced.

1.
Denton
,
J. D.
, and
Singh
,
U. K.
, 1979, “
Time Marching Methods for Turbomachinery Flow Calculation
,”
Application of Numerical Methods to Flow Calculations in Turbomachines
(
VKI Lecture Series
),
E.
Schmidt
, ed.,
von Kármán Institute for Fluid Dynamics
,
Rhode-St-Genèse, Belgium
.
2.
Brost
,
V.
,
Ruprecht
,
A.
, and
Maihöfer
,
M.
, 2003, “
Rotor-Stator Interactions in an Axial Turbine: A Comparison of Transient and Steady State Frozen Rotor Simulations
,”
Conference on Case Studies in Hydraulic Systems, CSHS03
.
3.
Argüelles
,
P.
,
Lumsden
,
J.
,
Bischoff
,
M.
,
Ranque
,
D.
,
Busquin
,
P.
,
Rasmussen
,
S.
,
Droste
,
B. A. C.
,
Reutlinger
,
P.
,
Evans
,
R.
,
Robins
,
R.
,
Kröll
,
W.
,
Terho
,
H.
,
Lagardère
,
J. -L.
,
Wittlöv
,
A.
, and
Lina
,
A.
, 2001, “
European Aeronautics: A Vision for 2020
,” Advisory Council for Aeronautics Research in Europe, Report.
4.
Trébinjac
,
I.
,
Kulisa
,
P.
,
Bulot
,
N.
, and
Rochuon
,
N.
, 2009, “
Effect of Unsteadiness on the Performance of a Transonic Centrifugal Compressor Stage
,”
ASME J. Turbomach.
0889-504X,
131
(
4
), p.
041011
.
5.
Hall
,
K. C.
,
Thomas
,
J. P.
,
Ekici
,
K.
, and
Voytovich
,
D. M.
, 2003, “
Frequency Domain Techniques for Complex and Nonlinear Flows in Turbomachinery
,”
33rd AIAA Fluid Dynamics Conference and Exhibit
, AIAA Paper No. 2003-3998.
6.
McMullen
,
M.
, and
Jameson
,
A.
, 2006, “
The Computational Efficiency of Non-Linear Frequency Domain Methods
,”
J. Comput. Phys.
0021-9991,
212
(
2
), pp.
637
661
.
7.
Verdon
,
J. M.
, and
Caspar
,
J. R.
, 1984, “
A Linearized Unsteady Aerodynamic Analysis for Transonic Cascades
,”
J. Fluid Mech.
0022-1120,
149
, pp.
403
429
.
8.
Dufour
,
G.
,
Sicot
,
F.
,
Puigt
,
G.
,
Liauzun
,
C.
, and
Dugeai
,
A.
, 2010, “
Contrasting the Harmonic Balance and Linearized Methods for Oscillating-Flap Simulations
,”
AIAA J.
0001-1452,
48
(
4
), pp.
788
797
.
9.
Ning
,
W.
, and
He
,
L.
, 1998, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Nonlinear Harmonic Euler Methods
,”
ASME J. Turbomach.
0889-504X,
120
(
3
), pp.
508
514
.
10.
Chen
,
T.
,
Vasanthakumar
,
P.
, and
He
,
L.
, 2001, “
Analysis of Unsteady Blade Row Interaction Using Nonlinear Harmonic Approach
,”
J. Propul. Power
0748-4658,
17
(
3
), pp.
651
658
.
11.
He
,
L.
,
Che
,
T.
,
Wells
,
R. G.
,
Li
,
Y. S.
, and
Ning
,
W.
, 2002, “
Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachineries
,”
ASME J. Turbomach.
0889-504X,
124
(
4
), pp.
564
571
.
12.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
, 2002, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
0001-1452,
40
(
5
), pp.
879
886
.
13.
Gopinath
,
A.
, and
Jameson
,
A.
, 2005, “
Time Spectral Method for Periodic Unsteady Computations Over Two- and Three- Dimensional Bodies
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2005-1220.
14.
Jameson
,
A.
, 1983, “
Solution of the Euler Equations for Two Dimensional Transonic Flow by a Multigrid Method
,”
Appl. Math. Comput.
0096-3003,
13
(
3–4
), pp.
327
355
.
15.
Gopinath
,
A.
, and
Jameson
,
A.
, 2006, “
Application of the Time Spectral Method to Periodic Unsteady Vortex Shedding
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2006-0449.
16.
Spiker
,
M. A.
,
Thomas
,
J. P.
,
Kielb
,
R. E.
,
Hall
,
K. C.
, and
Dowell
,
E. H.
, 2006, “
Modeling Cylinder Flow Vortex Shedding With Enforced Motion Using a Harmonic Balance Approach
,”
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, AIAA Paper No. 2006-1965.
17.
Thomas
,
J. P.
,
Dowell
,
E. H.
, and
Hall
,
K. C.
, 2002, “
Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit-Cycle Oscillations
,”
AIAA J.
0001-1452,
40
(
4
), pp.
638
646
.
18.
Ekici
,
K.
,
Hall
,
K. C.
, and
Dowell
,
E. H.
, 2008, “
Computationally Fast Harmonic Balance Methods for Unsteady Aerodynamic Predictions of Helicopter Rotors
,”
J. Comput. Phys.
0021-9991,
227
(
12
), pp.
6206
6225
.
19.
van der Weide
,
E.
,
Gopinath
,
A.
, and
Jameson
,
A.
, 2005, “
Turbomachinery Applications With the Time Spectral Method
,”
35th AIAA Fluid Dynamics Conference and Exhibit
, AIAA Paper No. 2005-4905.
20.
Ekici
,
K.
, and
Hall
,
K. C.
, 2007, “
Nonlinear Analysis of Unsteady Flows in Multistage Turbomachines Using Harmonic Balance
,”
AIAA J.
0001-1452,
45
(
5
), pp.
1047
1057
.
21.
Ekici
,
K.
, and
Hall
,
K. C.
, 2008, “
Nonlinear Frequency-Domain Analysis of Unsteady Flows in Turbomachinery With Multiple Excitation Frequencies
,”
AIAA J.
0001-1452,
46
(
8
), pp.
1912
1920
.
22.
Erdos
,
J. I.
,
Alznert
,
E.
, and
McNally
,
W.
, 1977, “
Numerical Solution of Periodic Transonic Flow Through a Fan Stage
,”
AIAA J.
0001-1452,
15
(
11
), pp.
1559
1568
.
23.
McMullen
,
M.
,
Jameson
,
A.
, and
Alonso
,
J.
, 2001, “
Acceleration of Convergence to a Periodic Steady State in Turbomachinery Flows
,”
39th Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2001-0152.
24.
Cambier
,
L.
, and
Veuillot
,
J.
, 2008, “
Status of the elsA Software for Flow Simulation and Multi-Disciplinary Applications
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2008-0664.
25.
Sicot
,
F.
,
Puigt
,
G.
, and
Montagnac
,
M.
, 2008, “
Block-Jacobi Implicit Algorithms for the Time Spectral Method
,”
AIAA J.
0001-1452,
46
(
12
), pp.
3080
3089
.
26.
Gerolymos
,
G. A.
,
Michon
,
G. J.
, and
Neubauer
,
J.
, 2002, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations
,”
J. Propul. Power
0748-4658,
18
(
6
), pp.
1139
1152
.
27.
He
,
L.
, 1990, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
0889-504X,
112
(
4
), pp.
714
722
.
28.
Lerat
,
A.
, and
Wu
,
Z. N.
, 1996, “
Stable Conservative Multidomain Treatments for Implicit Euler Solvers
,”
J. Comput. Phys.
0021-9991,
123
(
1
), pp.
45
64
.
29.
Orszag
,
S. A.
, 1971, “
On the Elimination of Aliasing in Finite-Difference Schemes by Filtering High-Wavenumber Components
,”
J. Atmos. Sci.
0022-4928,
28
(
6
), p.
1074
.
30.
Michon
,
G. J.
,
Miton
,
H.
, and
Ouayahya
,
N.
, 2005, “
Experimental Study of the Unsteady Flows and Turbulence Structure in an Axial Compressor From Design to Rotating Stall Conditions
,”
Sixth European Turbomachinery Conference
.
31.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
, 1981, “
Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes
,”
AIAA 14th Fluid and Plasma Dynamic Conference
, AIAA Paper No. 81-1259.
32.
Steger
,
J. L.
, and
Warming
,
R. F.
, 1981, “
Flux Vector Splitting of the Inviscid Gas-Dynamic Equations With Applications to Finite Difference Methods
,”
J. Comput. Phys.
0021-9991,
40
(
2
), pp.
263
293
.
33.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1992, “
A One-Equation Turbulence Transport Model for Aerodynamic Flows
,”
30th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 92-0439.
34.
Jameson
,
A.
, 1991, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Past Airfoils and Wings
,”
Tenth Computational Fluid Dynamics Conference
, AIAA Paper No. 91-1596.
35.
Sicot
,
F.
,
Dufour
,
G.
, and
Gourdain
,
N.
, 2009, “
Discrete-Frequency Noise Prediction Using a Harmonic Balance Method
,”
19th International Symposium on Air Breathing Engines
, ISABE Paper No. 2009-1131.
36.
Posson
,
H.
,
Sicot
,
F.
,
Moreau
,
S.
, and
Gourdain
,
N.
, 2010, “
Comparison of Analytical and Numerical Predictions of Stator Vane Pressure Distribution Produced by Mean Rotor Wake Impingement
,”
13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
.
37.
Vilmin
,
S.
,
Hirsch
,
C.
,
Lorrain
,
E.
, and
Swoboda
,
M.
, 2006, “
Unsteady Flow Modeling Across the Rotor/Stator Interface Using the Nonlinear Harmonic Method
,”
ASME Turbo Expo
, Paper No. GT-2006-90210.
38.
He
,
L.
, 1992, “
A Method of Simulating Unsteady Turbomachinery Flows With Multiple Perturbations
,”
AIAA J.
0001-1452,
30
(
11
), pp.
2730
2735
.
You do not currently have access to this content.