In this paper, results concerning the influence of chord length and inlet boundary layer thickness on the endwall loss of a linear turbine cascade are discussed. The investigations were performed in a low speed cascade tunnel using the turbine profile T40. The turning of 90 deg and 70 deg, the velocity ratio in the cascade from 1.0 to 3.5 as well as the chord length of 100 mm, 200 mm, and 300 mm were specified. In a measurement distance of one chord behind the cascade in main flow direction, an approximate proportionality of endwall loss and chord was observed in a wide range of velocity ratios. At small measurement distances (e.g., s2/l=0.4), this proportionality does not exist. If a part of the flow path within the cascade is approximately incorporated, a proportionality to the chord at small measurement distances can be obtained, too. Then, the magnitude of the endwall loss mainly depends on the distance in main flow direction. At velocity ratios near 1.0, the influence of the chord decreases rapidly, while at a velocity ratio of 1.0, the endwall loss is independent of the chord. By varying the inlet boundary layer thickness, no correlation of displacement thickness and endwall loss was achieved. A calculation method according to the modified integral equation by van Driest delivers the wall shear stress. Its influence on the endwall loss was analyzed.

1.
Thomson
,
J.
, 1876, “
On the Origin of Windings of Rivers in Alluvial Plains, With Remarks on the Flow of Water Round Bends in Pipes
,”
Proc. R. Soc. London
0370-1662,
25
, pp.
5
8
.
2.
Thomson
,
J.
, 1877, “
Experimental Demonstration in Respect to the Origin of Windings of Rivers in Alluvial Plains, and the Mode of Flow of Water Round Bends of Pipes
,”
Proc. R. Soc. London
0370-1662,
26
, pp.
356
357
.
3.
Thomson
,
J.
, 1857, “
On the Grand Currents of Atmospheric Circulation
,” Report of the British Association for the Advancement of Science,
27
, pp.
38
39
.
4.
Stodola
,
A.
, 1924,
Dampf- und Gasturbinen
,
Springer-Verlag
,
Berlin
.
5.
Gukasova
,
E. A.
, 1954, “
Analysis of Secondary Losses of Turbine Blades
,” in Russian, ZKTI-Report,
27
, pp.
94
135
.
6.
Scholz
,
N.
, 1954, “
Über den Einfluß der Schaufelhöhe auf die Randverluste in Schaufelgittern
,”
Forsch. Ingenieurwes.
0015-7899,
20
, pp.
155
157
.
7.
Wolf
,
H.
, 1961, “
Die Randverluste in geraden Schaufelgittern
,”
Wissenschaftliche Zeitschrift der Technischen Universität Dresden
0043-6925,
10
, pp.
353
364
.
8.
Sauer
,
H.
, 1970, “
Die Formen der dreidimensionalen Strömungen in axialen Gasturbinen und ihr Einfluss auf das Betriebsverhalten
,”
Wissenschaftliche Zeitschrift der Universität Rostock
,
19
, pp.
493
504
.
9.
Gregory-Smith
,
D. G.
, 1982, “
Secondary Flows and Losses in Axial Flow Turbines
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
819
822
.
10.
Sieverding
,
C. H.
, 1985, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
248
257
.
11.
Langston
,
L. S.
, 2001, “
Secondary Flows in Axial Turbines–A Review
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
11
26
.
12.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
, 2006, “
An Empirical Prediction Method for Secondary Losses in Turbines: Part II–A New Secondary Loss Correlation
,”
ASME J. Turbomach.
0889-504X,
128
(
2
), pp.
281
291
.
13.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
, 1951, “
An Examination of the Flow and Pressure Losses in Blade Rows of Axial-Flow Turbines
,” British ARC Reports and Memoranda, 2891.
14.
Kraft
,
H.
, 1949, “
Reaction Tests of Turbine Nozzles for Subsonic Velocities
,”
Trans. ASME
0097-6822,
71
, pp.
781
787
.
15.
Hubert
,
G.
, 1963, “
Untersuchungen über die Sekundärverluste in axialen Turbomaschinen
,”
VDI-Forschungsh.
0042-174X,
496
, pp.
5
18
.
16.
Wolf
,
H.
, 1959, “
Ein Beitrag zum Problem der Sekundär- strömungen in Schaufelgittern
,”
Wissenschaftliche Zeitschrift der Technischen Universität Dresden
0043-6925,
8
, pp.
763
772
.
17.
Langer
,
L.
, 1966, “
Über den Einfluss der Profillänge auf die Randverluste in einem Düsengitter
,”
Maschinenbautechnik.
0025-4495,
15
, pp.
303
306
.
18.
Watzlawick
,
R.
, 1991, “
Untersuchungen wesentlicher Einflussfaktoren auf die Sekundärverluste in Verdichter- und Turbinengittern bei Variation des Schaufelseitenverhältnisses
,” Ph.D. thesis, Universität der Bundeswehr München, München, Germany.
19.
Squire
,
H. B.
, and
Winter
,
K. G.
, 1951, “
The Secondary Flow in a Cascade of Airfoils in a Nonuniform Stream
,”
J. Aeronaut. Sci.
0095-9812,
18
, pp.
271
277
.
20.
Gersten
,
K.
, 1957, “
Über den Einfluss der Geschwin-digkeitsverteilung in der Zuströmung auf die Sekundär-strömungen in Schaufelgittern
,”
Forsch. Ingenieurwes.
0015-7899,
23
, pp.
95
101
.
21.
Klein
,
A.
, 1966, “
Untersuchungen über den Einfluss der Zuströmgrenzschicht auf die Sekundärströmungen in den Beschaufelungen von Axialturbinen
,”
Forsch. Ingenieurwes.
0015-7899,
32
, pp.
175
188
.
22.
Came
,
P. M.
, 1973, “
Secondary Loss Measurements in a Cascade of Turbine Blades
,”
Conference Publication of the National Gas Turbine Establishment Pyestock (3)
, pp.
75
83
.
23.
Mobarak
,
A.
,
Khalafallah
,
M. G.
,
Heikal
,
H. A.
, and
Osman
,
A. M.
, 1989, “
Study of Various Factors Affecting Secondary Loss Vortices Downstream a Straight Turbine Cascade
,”
ASME
Paper No. 89-GT-12.
24.
Wei
,
A.
, 1993, “
Der Einfluss der Profilgeometrie auf die Entwicklung der Sekundärströmungen in Turbinengittern
,” Ph.D. thesis, Universität der Bundeswehr München, Bavaria, Germany.
25.
van Driest
,
E. R.
, 1956, “
On Turbulent Flow Near a Wall
,”
J. Aeronaut. Sci.
0095-9812,
23
, pp.
1007
1011
.
26.
Nitsche
,
W.
, and
Brunn
,
A.
, 2006,
Strömungsmesstechnik
,
Springer-Verlag
,
Berlin, Heidelberg
.
You do not currently have access to this content.