This work newly proposes an uncertainty quantification (UQ) method named sparse approximation of moment-based arbitrary polynomial chaos (SAMBA PC) that offers a single solution to many current problems in turbomachinery applications. At the moment, every specific case is characterized by a variety of different input types such as histograms (from experimental data), normal probability density functions (PDFs) (design rules) or fat tailed PDFs (for rare events). Thus, the application of UQ requires the adaptation of ad hoc methods for each individual case. A second problem is that parametric PDFs have to be determined for all inputs. This is difficult if only few samples are available. In gas turbines, however, the collection of statistical information is difficult, expensive, and having scarce information is the norm. A third critical limitation is that if using nonintrusive polynomial chaos (NIPC) methods, the number of required simulations grows exponentially with increasing numbers of input uncertainties: the so-called “curse of dimensionality.” It is shown that the fitting of parametric PDFs to small data sets can lead to large bias and the direct use of the available data is more accurate. This is done by propagating uncertainty through several test functions and the computational fluid dynamics (CFD) simulation of a diffuser, highlighting the impact of different PDF fittings on the output. From the results, it is concluded that the direct propagation of the experimental data set is preferable to the fit of parametric distributions if data is scarce. Thus, the suggested method offers an alternative to the maximum entropy theorem to handle scarce data. SAMBA simplifies the mathematical procedure for many different input types by basing the polynomial expansion on moments. Its moment-based expansion automatically takes care of arbitrary combinations of different input data. It is also numerically efficient compared to other UQ implementations. The relationship between the number of random variables and number of simulation is linear (only 21 simulations for ten input random variables are required). It is shown in this paper that SAMBA's algorithm can propagate a high number of input distributions through a set of nonlinear analytic test functions. Doing this, the code needs a very small number of simulations and preserve a 5% error margin. SAMBA's flexibility to handle different forms of input distributions and a high number of input variables is shown on a low-pressure turbine (LPT) blade-based on H2 profile. The relative importance of manufacturing errors in different location of the blade is analyzed.

References

1.
Montomoli
,
F.
,
Massini
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2012
, “
Geometrical Uncertainty and Film Cooling: Fillet Radii
,”
ASME J. Turbomach.
,
134
(
1
), p.
011019
.
2.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
.
3.
Montomoli
,
F.
,
Ammaro
,
A.
, and
Uchida
,
S.
,
2013
, “
Uncertainty Quantification and Conjugate Heat Transfer: A Stochastic Analysis
,”
ASME J. Turbomach.
,
135
(
3
), p.
031014
.
4.
Oladyshkin
,
S.
, and
Nowak
,
W.
,
2012
, “
Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Saf.
,
106
, pp.
179
190
.
5.
Jaynes
,
E. T.
,
1982
, “
On the Rationale of Maximum-Entropy Methods
,”
Proc. IEEE
,
70
(
9
), pp.
939
952
.
6.
Witteveen
,
J. A. S.
,
Sarkar
,
S.
, and
Bijl
,
H.
,
2007
, “
Modeling Physical Uncertainties in Dynamic Stall Induced Fluid-Structure Interaction of Turbine Blades Using Arbitrary Polynomial Chaos
,”
Comput. Struct.
,
85
(
11–14
), pp.
866
878
.
7.
Oladyshkin
,
S.
,
Class
,
H.
,
Helmig
,
R.
, and
Nowak
,
W.
,
2011
, “
A Concept for Data-Driven Uncertainty Quantification and Its Application to Carbon Dioxide Storage in Geological Formations
,”
Adv. Water Resour.
,
34
(
11
), pp.
1508
1518
.
8.
Oladyshkin
,
S.
,
Schröder
,
P.
,
Class
,
H.
, and
Nowak
,
W.
,
2013
, “
Chaos Expansion Based Bootstrap Filter to Calibrate CO2 Injection Models
,”
Energy Proc.
,
40
, pp.
398
407
.
9.
Oladyshkin
,
S.
,
Class
,
H.
,
Helmig
,
R.
, and
Nowak
,
W.
,
2011
, “
An Integrative Approach to Robust Design and Probabilistic Risk Assessment for CO2 Storage in Geological Formations
,”
Comput. Geosci.
,
15
(
3
), pp.
565
577
.
10.
Ernst
,
O. G.
,
Mugler
,
A.
,
Starkloff
,
H.-J.
, and
Ullmann
,
E.
,
2012
, “
On the Convergence of Generalized Polynomial Chaos Expansions
,”
Math. Modell. Numer. Anal.
,
46
(
2
), pp.
317
339
.
11.
Soize
,
C.
, and
Ghanem
,
R.
,
2004
, “
Physical Systems With Random Uncertainties: Chaos Representations With Arbitrary Probability Measure
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
395
410
.
12.
Carnevale
,
M.
,
Montomoli
,
F.
,
Ammaro
,
A.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2013
, “
Uncertainty Quantification: A Stochastic Method for Heat Transfer Prediction Using LES
,”
ASME J. Turbomach.
,
135
(
5
), p.
051021
.
13.
Loeven
,
G. J. A.
,
2010
, “
Efficient Uncertainty Quantification in Computational Fluid Dynamics
,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3A8313a3bd-701c-458a-bf99-e819e1276084
14.
Montomoli
,
F.
,
Amirante
,
D.
,
Hills
,
N.
,
Shahpar
,
S.
, and
Massini
,
M.
,
2014
, “
Uncertainty Quantification, Rare Events, and Mission Optimization: Stochastic Variations of Metal Temperature During a Transient
,”
ASME J. Eng. Gas Turbines Power
,
137
(4), p.
042101
.
15.
Mysovskih
,
I. P.
,
1968
, “
On the Construction of Cubature Formulas With Fewest Nodes
,”
Dokl. Akad. Nauk SSSR
,
178
(
6
), pp.
1252
1254
.
16.
Golub
,
G. H.
, and
Welsch
,
J. H.
,
1969
, “
Calculation of Gauss Quadrature Rules
,”
Math. Comput.
,
23
(
106
), pp.
221
230
.
17.
Brack
,
S.
, and
Muller
,
Y.
,
2015
, “
Probabilistic Analysis of the Secondary Air System of a Low-Pressure Turbine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
022602
.
18.
Schnell
,
R.
,
Lengyel-Kampmann
,
T.
, and
Nicke
,
E.
,
2014
, “
On the Impact of Geometric Variability on Fan Aerodynamic Performance, Unsteady Blade Row Interaction, and Its Mechanical Characteristics
,”
ASME J. Turbomach.
,
136
(
9
), p.
091005
.
19.
Garzon
,
V. E.
,
2003
, “
Probabilistic Aerothermal Design of Compressor Airfoils
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/16995
20.
Duffner
,
J. D.
,
2008
, “
The Effects of Manufacturing Variability on Turbine Vane Performance
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/44933
21.
Panizza
,
A.
,
Bonini
,
A.
, and
Innocenti
,
L.
,
2015
, “
Uncertainty Quantification of Hot Gas Ingestion for a Gas Turbine
,”
ASME
Paper No. GT2015-42679.
22.
Pečnik
,
R.
,
Witteveen
,
J. A. S.
, and
Iaccarino
,
G.
,
2011
, “
Uncertainty Quantification for Laminar-Turbulent Transition Prediction in RANS Turbomachinery Applications
,”
AIAA
Paper No. 2011-660.
23.
Gopinathrao
,
N. P.
,
Mabilat
,
C.
, and
Alizadeh
,
S.
,
2009
, “
Non-Deterministic Thermo-Fluid Analysis of a Compressor Rotor-Stator Cavity
,”
AIAA
Paper No. 2009-2278.
24.
Loeven
,
G. J. A.
, and
Bijl
,
H.
,
2010
, “
The Application of the Probabilistic Collocation Method to a Transonic Axial Flow Compressor
,”
AIAA
Paper No. 2010-2923.
25.
Weitzman
,
M.
,
2011
, “
Fat-Tailed Uncertainty in the Economics of Catastrophic Climate Change
,”
Rev. Environ. Econ. Policy
,
5
(
2
), pp.
275
292
.
26.
Suárez-Lledó
,
J.
,
2011
,
The Black Swan: The Impact of the Highly Improbable
, Vol.
25
,
Random House
,
New York
.
27.
Ahlfeld
,
R.
,
Belkouchi
,
B.
, and
Montomoli
,
F.
,
2016
, “
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
,”
J. Comput. Phys.
,
320
, pp.
1
16
.
28.
Rutishauser
,
H.
,
1963
, “
On a Modification of the QD-Algorithm With Graeffe-Type Convergence
,”
Z. Angew. Math. Phys.
,
13
(
5
), pp.
493
496
.https://doi.org/10.1007/BF01601077
29.
Eldred
,
M.
, and
Burkardt
,
J.
,
2009
, “
Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
,”
AIAA
Paper No. 2009-976.
30.
Smolyak
,
S. A.
,
1963
, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions
,”
Dokl. Akad. Nauk SSSR
,
4
, pp.
240
243
.
31.
Judd
,
K. L.
,
Maliar
,
L.
,
Maliar
,
S.
, and
Valero
,
R.
,
2014
, “
Smolyak Method for Solving Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain
,”
J. Econ. Dyn. Control
,
44
, pp.
92
123
.
32.
Chandavari
,
V.
, and
Palekar
,
S.
,
2014
, “
Diffuser Angle Control to Avoid Flow Separation
,”
Tech. Res. Appl.
,
2
(
5
), pp.
16
21
.http://www.ijtra.com/view/diffuser-angle-control-to-avoid-flow-separation.pdf
33.
DalBello
,
T.
,
Dippold
,
V.
, and
Georgiadis
,
N. J.
,
2005
, “
Computational Study of Separating Flow in a Planar Subsonic Diffuser
,” National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, Report No.
2005-213894
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050237896.pdf
34.
Thakur
,
N.
,
Keane
,
A.
, and
Nair
,
P. B.
,
2008
, “
Capture of Manufacturing Uncertainty in Turbine Blades Through Probabilistic Techniques
,” Association for Structural and Multidisciplinary Optimization (
ASMO
), Bath, UK, July 7–8, pp.
1
10
.https://eprints.soton.ac.uk/64276/
35.
Montomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
,
2010
, “
Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), p.
431018
.
36.
Ahlfeld
,
R.
,
Montomoli
,
F.
,
Scalas
,
E.
, and
Shahpar
,
S.
,
2017
, “
Uncertainty Quantification for Fat-Tailed Probability Distributions in Aircraft Engine Simulations
,”
J. Propul. Power
,
33
(
4
), pp.
881
890
.https://doi.org/10.2514/1.B36278
You do not currently have access to this content.