In this paper, the modifications induced by the presence of an inlet flow nonuniformity on the aerodynamic performance of a nozzle vane cascade are experimentally assessed. Tests were carried out in a six vane linear cascade whose profile is typical of a first stage nozzle guide vane of a modern heavy-duty gas turbine. An obstruction was located in the wind tunnel inlet section to produce a nonuniform flow upstream of the leading edge plane. The cascade was tested in an atmospheric wind tunnel at an inlet Mach number Ma1 = 0.12, with a high turbulence intensity (Tu1 = 9%) and variable obstruction tangential and axial positions, as well as tangential extension. The presented results show that an inlet flow nonuniformity influences the stagnation point position when it faces the vane leading edge from the suction side. A relevant increase of both 2D and secondary losses is observed when the nonuniformity is aligned to the vane leading edge. When it is instead located in between the passage, it does not affect the stagnation point location, in the meanwhile allowing a reduction in the secondary loss.

References

1.
Barringer
,
M.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021009
.
2.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2002
, “
Effect of Nonuniform Inlet Conditions on Endwall Secondary Flows
,”
ASME J. Turbomach.
,
124
(
4
), pp.
623
631
.
3.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul.
,
5
(
1
), pp.
64
71
.
4.
Stitzel
,
S.
, and
Thole
,
K. A.
,
2004
, “
Flow Field Computations of Combustor-Turbine Interactions Relevant to a Gas Turbine Engine
,”
ASME J. Turbomach.
,
126
(
1
), pp.
122
129
.
5.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
6.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2012
, “
Aerodynamic and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part I: Vane Inlet Temperature Profile Generation and Migration
,”
ASME J. Turbomach.
,
134
(
1
), p.
011006
.
7.
Jenkins
,
S. C.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
.
8.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
,
2009
, “
Superposition Predictions of the Reduction of Hot Streaks by Coolant From a Film-Cooled Guide Vane
,”
ASME J. Turbomach.
,
131
(
9
), p.
041002
.
9.
Insinna
,
M.
,
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2014
, “
Conjugate Heat Transfer Analysis of a Film Cooled High-Pressure Turbine Vane Under Realistic Combustor Exit Flow Conditions
,”
ASME
Paper No. GT2014-25280.
10.
Insinna
,
M.
,
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2015
, “
Effects of Realistic Inflow Conditions on the Aero-Thermal Performance of a Film-Cooled Vane
,”
11th European Turbomachinery Conference
(
ETC11
), Madrid, Spain, Mar. 23–27.http://www.etc11.eu/paper/ETC2015-095.pdf
11.
Mazzoni
,
C. M.
,
Klostermeier
,
C.
, and
Rosic
,
B.
,
2015
, “
Combustor Wall Axial Location Effects on First Vane Leading Edge Cooling
,”
J. Propul. Power
,
31
(
4
), pp.
1094
1106
.
12.
Mazzoni
,
C. M.
,
Klostermeier
,
C.
, and
Rosic
,
B.
,
2014
, “
Influence of Large Wake Disturbances Shed From the Combustor Wall on the Leading Edge Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081503
.
13.
Perdichizzi
,
A.
, and
Dossena
,
V.
,
1993
, “
Incidence Angle and Pitch-Chord Effects on Secondary Flows Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
115
(
3
), pp.
383
391
.
14.
Naik
,
S.
,
Krueckels
,
J.
,
Gritsch
,
M.
, and
Schnieder
,
M.
,
2014
, “
Multirow Film Cooling Performances of a High Lift Blade and Vane
,”
ASME J. Turbomach.
,
136
(
5
), p.
051003
.
15.
Barigozzi
,
G.
,
Perdichizzi
,
A.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2015
, “
Aerodynamic and Heat Transfer Characterization of a Nozzle Vane Cascade With and Without Platform Cooling
,”
ASME
Paper No. GT2015-42845.
16.
Barigozzi
,
G.
,
Abdeh
,
H.
,
Perdichizzi
,
A.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2016
, “
Aero-Thermal Performance of a Nozzle Vane Cascade With a Generic Non Uniform Inlet Flow Condition—Part II: Influence of Purge and Film Cooling Injection
,”
ASME
Paper No. GT2016-57445.
17.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
18.
Eckert
,
E. R. G.
,
1986
, “
Energy Separation in Fluid Streams
,”
Int. Commun. Heat Mass Transfer
,
13
(
2
), pp.
127
143
.
19.
Carscallen
,
W. E.
,
Currie
,
T. C.
,
Hogg
,
S. I.
, and
Gostelow
,
J. P.
,
1999
, “
Measurement and Computation of Energy Separation in the Vortical Wake Flow of a Turbine Nozzle Cascade
,”
ASME J. Turbomach.
,
121
(
4
), pp.
703
707
.
You do not currently have access to this content.