Abstract

Detailed heat transfer measurements are necessary to protect the blades under harsh and complex flow conditions. Therefore, this study investigated the heat transfer characteristics on the blade endwall under flow conditions that simulate high turbulence intensity of the main flow and the generation of wakes by the trailing edge of the vane. The endwall heat transfer was measured using the naphthalene sublimation method. A turbulence generating grid was installed in a linear cascade to simulate the main flow with high turbulence intensity and a wake generator with a rod bundle was used to simulate the wakes generated by the trailing edge of the vane. In the case of high turbulence intensity without wakes, the main flow with high turbulence intensity (turbulence intensity, T.I = 7.5%) had little impact on the effect of the horseshoe vortex and passage vortex on the heat transfer characteristics. However, increasing turbulence caused the endwall heat transfer to decrease near the pressure side of the blade and increase near the suction side of the blade. On the other hand, the wakes resulted in heat transfer characteristics similar to high turbulence intensity but decreased heat transfer by horseshoe vortex and passage vortex. The endwall heat transfer distributions were similar regardless of the turbulence intensity (T.I = 1.2% and 7.5%) in the cases with wakes (rod passing Strouhal number, S = 0.3). The flow condition of S = 0.3 has a more significant influence on the endwall heat transfer than that of T.I = 7.5%.

References

1.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
. 10.1115/1.2841006
2.
Thole
,
K.
,
2006
, “Airfoil Endwall Heat Transfer,”
The Gas Turbine Handbook
,
R.
Dennisi
, ed.,
National Energy Technology Laboratory
,
Morgantown, WV
, pp.
353
363
.
3.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
. 10.1115/1.2840916
4.
Satta
,
F.
, and
Tanda
,
G.
,
2014
, “
Measurement of Local Heat Transfer Coefficient on the Endwall of a Turbine Blade Cascade by Liquid Crystal Thermography
,”
Exp. Therm. Fluid Sci.
,
58
(
1
), pp.
209
215
. 10.1016/j.expthermflusci.2014.07.005
5.
Chung
,
H.
,
Hong
,
C. W.
,
Kim
,
S. H.
,
Cho
,
H. H.
, and
Moon
,
H. K.
,
2016
, “
Heat Transfer Measurement Near Endwall Region of First Stage Gas Turbine Nozzle Having Platform Misalignment at Combustor-Turbine Interface
,”
Int. Commun. Heat Mass Transf.
,
78
(
1
), pp.
101
111
. 10.1016/j.icheatmasstransfer.2016.08.022
6.
Giel
,
P. W.
,
Thurman
,
D. R.
,
Van Fossen
,
G. J.
,
Hippensteele
,
S. A.
, and
Boyle
,
R. J.
,
1998
, “
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
120
(
2
), pp.
305
313
. 10.1115/1.2841407
7.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
High Free-Stream Turbulence Effects on Endwall Heat Transfer for a Gas Turbine Stator Vane
,”
ASME J. Turbomach.
,
122
(
4
), pp.
699
708
. 10.1115/1.1312807
8.
Lee
,
S. W.
,
Jun
,
S. B.
,
Park
,
B.-K.
, and
Lee
,
J. S.
,
2002
, “
Effects on High Free-Stream Turbulence on the Near-Wall Flow and Heat/Mass Transfer on the Endwall of a Linear Turbine Rotor Cascade
,”
Proceedings of ASME Turbo Expo
,
Amsterdam
,
ASME Paper No. GT2002-30187
.
9.
Dunn
,
M. G.
,
1986
, “
Heat Flux Measurements for the Rotor of a Full-Stage Turbine: Part I—Time Averaged Results
,”
ASME J. Turbomach.
,
108
(
1
), pp.
90
97
. 10.1115/1.3262029
10.
Doorly
,
D. J.
,
1988
, “
Modeling the Unsteady Flow in a Turbine Rotor Passage
,”
ASME J. Turbomach.
,
110
(
1
), pp.
27
37
. 10.1115/1.3262164
11.
Han
,
J.-C.
,
Zhang
,
L.
, and
Ou
,
S.
,
1993
, “
Influence of Unsteady Wake on Heat Transfer Coefficient From a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
904
911
. 10.1115/1.2911386
12.
Zhang
,
L.
, and
Han
,
J.-C.
,
1995
, “
Combined Effect of Free-Stream Turbulence and Unsteady Wake on Heat Transfer Coefficients From a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
296
302
. 10.1115/1.2822520
13.
Park
,
J. S.
,
Jung
,
E. Y.
,
Lee
,
D. H.
,
Kim
,
K. M.
,
Kim
,
B. S.
,
Chang
,
B. M.
, and
Cho
,
H. H.
,
2014
, “
Effects of Unsteady Wake on Heat Transfer of Endwall Surface in Linear Cascade
,”
ASME J. Heat Transfer
,
136
(
6
), p.
061701
. 10.1115/1.4026373
14.
Choi
,
S. M.
,
Park
,
J. S.
,
Chung
,
H. Y.
,
Park
,
S.
, and
Cho
,
H. H.
,
2017
, “
Upstream Wake Effect on Flow and Heat Transfer Characteristics at an Endwall of First-Stage Blade of a Gas Turbine
,”
Exp. Therm. Fluid Sci.
,
86
(
1
), pp.
23
36
. 10.1016/j.expthermflusci.2017.03.030
15.
Choi
,
S. M.
,
Kim
,
J.
,
Bang
,
M.
,
Kim
,
J.
, and
Cho
,
H. H.
,
2018
, “
Effect of the Wake on the Heat Transfer of a Turbine Blade Endwall According to Relative Position of the Cylindrical rod
,”
Int. Commun. Heat Mass Transf.
,
94
(
1
), pp.
61
70
. 10.1016/j.icheatmasstransfer.2018.03.011
16.
El-Gabry
,
L. A.
,
Thurman
,
D. R.
, and
Poinsatte
,
P. E.
,
2014
, “
Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry
,”
NASA Report No. NASA/TM-2014-218403
. https://ntrs.nasa.gov/search.jsp?R=20150000733
17.
Van Fossen
,
G. J.
,
Simoneau
,
R. J.
, and
Ching
,
C. Y.
,
1994
, “
Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation-Region Heat Transfer
,”
NASA Technical Paper No. 3487
.
18.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Heat Fluid Flow
,
8
(
2
), pp.
82
92
. 10.1016/0142-727X(87)90001-4
19.
Park
,
J. S.
,
Choi
,
S. M.
, and
Cho
,
H. H.
,
2017
, “
Effect of an Unsteady Wake on the External Heat Transfer of 2nd Stage Rotor
,”
Int. J. Heat Mass Transf.
,
111
(
1
), pp.
105
114
. 10.1016/j.ijheatmasstransfer.2017.03.112
20.
Goldstein
,
R. J.
, and
Cho
,
H. H.
,
1995
, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
,
10
(
4
), pp.
416
434
. 10.1016/0894-1777(94)00071-F
21.
Ambrose
,
D.
,
Lawrenson
,
I. J.
, and
Sprake
,
C. H. S.
,
1975
, “
The Vapour Pressure of Naphthalene
,”
J. Chem. Thermodyn.
,
7
(
12
), pp.
1173
1176
. 10.1016/0021-9614(75)90038-5
22.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
. 10.1016/0894-1777(88)90043-X
You do not currently have access to this content.