Abstract

This paper presents the development of accurate turbulence closures for low-pressure turbine (LPT) wake mixing prediction by integrating a machine-learning approach based on gene expression programming (GEP), with Reynolds-averaged Navier–Stokes (RANS)-based computational fluid dynamics (CFD). In order to further improve the performance and robustness of GEP-based data-driven closures, the fitness of models is evaluated by running RANS calculations in an integrated way, instead of an algebraic function. Using a canonical turbine wake with inlet conditions prescribed based on high-fidelity data of the T106A cascade, we demonstrate that the “CFD-driven” machine-learning approach produces physically correct non-linear turbulence closures, i.e., predict the right down-stream wake development and maintain an accurate peak wake loss throughout the domain. We then extend our analysis to full turbine blade cases and show that the model development is sensitive to the training region due to the presence of deterministic unsteadiness in the near-wake. Models developed including the near-wake have artificially large diffusion coefficients to over-compensate for the vortex shedding steady RANS cannot capture. In contrast, excluding the near-wake in the model development produces the correct physical model behavior, but predictive accuracy in the near-wake remains unsatisfactory. This can be remedied by using the physically consistent models in unsteady RANS. Overall, the “CFD-driven” models were found to be robust and capture the correct physical wake mixing behavior across different LPT operating conditions and airfoils such as T106C and PakB.

References

1.
Leschziner
,
M.
,
2015
,
Statistical Turbulence Modelling for Fluid Dynamics—Demystified: An Introductory Text for Graduate Engineering Students
,
World Scientific
,
Oxford UK
.
2.
Medic
,
G.
,
2019
, “
Impact of Vision 2030 on CFD Practices in Propulsion Industry
,” In
AIAA Aviat. 2019 Forum
,
Dallas, TX
, p.
2943
.
3.
Singh
,
A. P.
,
Medida
,
S.
, and
Duraisamy
,
K.
,
2017
, “
Machine-Learning-Augmented Predictive Modeling of Turbulent Separated Flows Over Airfoils
,”
AIAA J.
,
55
(
7
), pp.
2215
2227
.
4.
Wang
,
J.-X.
,
Wu
,
J.-L.
, and
Xiao
,
H.
,
2017
, “
A Physics Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data
,”
Phys. Rev. Fluids
,
2
(
3
), p.
034603
.
5.
Wu
,
J.-L.
,
Xiao
,
H.
, and
Paterson
,
E.
,
2018
, “
Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework
,”
Phys. Rev. Fluids
,
3
, p.
074602
.
6.
Ling
,
J.
,
Templeton
,
J.
, and
Kurzawski
,
A.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks with Embedded Invariance
,”
J. Fluid Mech.
,
807
, pp.
155
166
.
7.
Milani
,
P. M.
,
Ling
,
J.
, and
Eaton
,
J. K.
,
2019
, “
Physical Interpretation of Machine Learning Models Applied to Film Cooling Flows
,”
ASME J. Turbomach.
,
141
(
1
), p.
011004
.
8.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
53
(
1
), pp.
357
377
.
9.
Ferreira
,
C.
,
2001
, “
Gene Expression Programming: a New Adaptive Algorithm for Solving Problems
,”
Complex Syst.
,
13
(
2
), pp.
87
129
.
10.
Weatheritt
,
J.
, and
Sandberg
,
R. D.
,
2016
, “
A Novel Evolutionary Algorithm Applied to Algebraic Modifications of the RANS Stress-Strain Relationship
,”
J. Comput. Phys.
,
325
, pp.
22
37
.
11.
Akolekar
,
H. D.
,
Sandberg
,
R. D.
,
Hutchins
,
N.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2019
, “
Machine-Learnt Turbulence Closures for Low Pressure Turbines with Unsteady Inflow Conditions
,”
ASME J. Turbomach.
,
141
(
10
), p.
101009
.
12.
Akolekar
,
H. D.
,
Weatheritt
,
J.
,
Hutchins
,
N.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2019
, “
Development and Use of Machine-Learnt Algebraic Reynolds Stress Models for Enhanced Prediction of Wake Mixing in Low-Pressure Turbines
,”
ASME J. Turbomach.
,
141
(
4
), p.
041010
.
13.
Wu
,
J.
,
Xiao
,
H.
,
Sun
,
R.
, and
Wang
,
Q.
,
2019
, “
Reynolds-averaged Navier–Stokes Equations With Explicit Data-Driven Reynolds Stress Closure Can Be Ill-Conditioned
,”
J. Fluid Mech.
,
869
, pp.
553
586
.
14.
Akolekar
,
H. D.
,
2019
, “
Turbulence Model Development and Implementation For Low Pressure Turbines Using a Machine Learning Approach
” Ph.D. thesis,
University of Melbourne
,
Melbourne, Australia
.
15.
Weatheritt
,
J.
,
Pichler
,
R.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2017
, “
Machine Learning for Turbulence Model Development Using a High Fidelity HPT Cascade Simulation
,”
ASME Turbo Expo 2017 Turbomach. Tech. Conf. Expo.
,
Charlotte, NC
, ASME, pp.
GT2017
63497
.
16.
Sandberg
,
R. D.
,
Tan
,
R.
,
Weatheritt
,
J.
,
Ooi
,
A.
,
Haghiri
,
A.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2018
, “
Applying Machine Learnt Explicit Algebraic Stress and Scalar Flux Models To a Fundamental Trailing Edge Slot
,”
ASME J. Turbomach.
,
140
(
10
), p.
101008
.
17.
Weatheritt
,
J.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
,
Mizukami
,
S.
, and
Tanimoto
,
K.
,
2019
, “
Data-Driven Scalar-Flux Model Development With Application to Jet in Cross Flow
,”
Int. J. Heat Mass Transf.
,
147
, p.
118931
.
18.
Lav
,
C.
,
Sandberg
,
R. D.
, and
Philip
,
J.
,
2019
, “
A Framework to Develop Data-Driven Turbulence Models for Flows With Organised Unsteadiness
,”
J. Comput. Phys.
,
383
, pp.
148
165
.
19.
Schoepplein
,
M.
,
Weatheritt
,
J.
,
Sandberg
,
R.
,
Talei
,
M.
, and
Klein
,
M.
,
2018
, “
Application of An Evolutionary Algorithm to LES Modelling of Turbulent Transport in Premixed Flames
,”
J. Comput. Phys.
,
374
, pp.
1166
1179
.
20.
Zhao
,
Y.
,
Akolekar
,
H. D.
,
Weatheritt
,
J.
,
Michelassi
,
V.
, and
Sandberg
,
R. D.
,
2020
, “
RANS Turbulence Model Development Using CFD-Driven Machine Learning
,”
J. Comput. Phys.
,
411
, p.
109413
.
21.
Pope
,
S. B.
,
1975
, “
A More General Effective-Viscosity Hypothesis
,”
J. Fluid Mech.
,
72
(
2
), pp.
331
340
.
22.
Akolekar
,
H. D.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
,
Hutchins
,
N.
, and
Michelassi
,
V.
,
2019
, “
Turbulence Model Development for Low & High Pressure Turbines Using a Machine Learning Approach
,”
Int. Soc. Air Breath. Engines
,
Canberra, Australia
,
ISABE
.
23.
Michelassi
,
V.
,
Chen
,
L. W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low Pressure Turbine—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
24.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1992
, “
Navier–Stokes Solution of Transonic Cascade Flows Using Non-Periodic C-Type Grids
,”
J. Propuls. Power
,
8
(
2
), pp.
410
417
.
25.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
26.
Clinckemaillie
,
J.
,
Fattorini
,
L.
,
Fontani
,
T.
,
Nuyts
,
C.
,
Wain
,
C.
, and
Arts
,
T.
,
2015
, “
Aerodynamic Performance of a Very-High-Lift Low-Pressure Turbine Airfoil (T106C) at Low Reynolds and High Mach Number Including the Effect of Incoming Periodic Wakes
,”
11th European Conference Turbomachinary Fluid Dynamics Thermodynamics
, pp.
1
11
.
27.
Michálek
,
J.
,
Monaldi
,
M.
, and
Arts
,
T.
,
2010
, “
Aerodynamic Performance of a Very High Lift Low Pressure Turbine Airfoil (T106C) at Low Reynolds and High Mach Number with Effect of Free Stream Turbulence Intensity
,”
ASME Turbo Expo 2010 Power Land, Sea Air
, pp.
GT2010
22884
.
28.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
2001
, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
,
123
(
2
), pp.
198
206
.
29.
Akolekar
,
H. D.
,
Waschkowski
,
F.
,
Zhao
,
Y.
,
Pacciani
,
R.
, and
Sandberg
,
R. D.
,
2021
, “
Transition Modeling for Low Pressure Turbines Using CFD-Driven Machine Learning
,”
Energies.
(Under Review).
You do not currently have access to this content.